论文部分内容阅读
2010年10月,我校为创建市教育现代化学校,特邀请市教研室领导和兄弟学校老师来我校进行观摩交流,作为青年教师,我承担了一堂数学教学的公开课。我所开设的公开课内容为数学活动课,数学活动课苏科教材的一个特点,在每一章的结尾都设置了这样一节数学活动课。
课题:数学活动课——正方体的涂色
【教学目标】
1.从平面引入立体图形,让学生初步体会平面与立体之间的关系
2.丰富空间观念,发展空间想象能力,对正方体有更进一步的体验与理解
3.培养学生归纳的思想
4.让学生动手操作,仔细观察,认真思考,合作交流,顺利闯关
课前准备:学生每人准备一个萝卜或者土豆或者南瓜制作的边长为3至5厘米的正方体一个,彩色水笔一支,小刀一把。教师同样准备正方体一个,同时准备多媒体课件。
【教学过程及教学片断】
1.新课引入
学生回忆正方体的特征--正方体有6个面,12条棱,8个顶点,面积和体积的计算公式。
2.学生动手,探索实践
第一关:①将一个正方形分割成面积相等的四个小正方形。
②将一个正方形分割成面积相等的9个小正方形,16个面积相等的小正方形?分割成 ______个小正方形?
具体要求:请同学自己动手画图,并用语言叙述。教师:根据学生的叙述,动态添加分割线,并用多媒体演示分割过程。
第二关:①把一个正方体每条棱2等分,按照上题的分割方法,把正方体切开,可得到多少个小正方体?②把一个正方体每条棱3等分,切开以后可得到多少个小正方体?4等分呢?n等分呢?
教师利用多媒体课件展示分割过程,让学生从运动的角度观察正方体的分割展开。
第三关:动手操作
①把正方体每条棱2等分,并且把表面涂上颜色,切开以后观察,3个面涂色的正方体有几个?2面涂色的小正方体有几个?1面涂色的小正方体有几个?各面无涂色的小正方体有几个?
活动要求:前后4个学生为一个小组,一名学生负责切正方体,2名同学负责清点,1名同学负责记录,并设置组长1名,协调小组成员之间合作关系,提高活动效率。
②把正方体每条棱3等分,4等分,分别清点完成表格:
猜想每棱5等分时,各组数据?
教师运用多媒体演示分割过程,采用分层的方法。
学生根据分层的思想,填写表格:
思考:每棱n等分是,情况又如何呢?
【教学片断】
师:怎么通过列表或者图片寻找规律呢?
生:三面涂色的个数始终不变都是8个。因为三面涂色的都处于定点处,不管如何变化定点处的小正方体是不变的。至于其他的,我还没有找到规律。
师:刚才这位同学回答非常正确,通过列表和图片我们很容易发现这样一个规律,那么二面涂色的正方体个数又如何呢?你们能否从图中看出某些关系吗?
生:二面涂色的在棱上除顶点外,每条棱n等分后每条棱上两面涂色的正方体数是n-2个,一共12条棱所以是12( n-2)个;
这时候班上的学生开始讨论开了,不久就有几个同学跃跃欲试抢着发言。
生:一面涂色的正方体在六个面中间,除顶点和棱上,每一面上对应有(n-2)2个,所以总数是6(n-2)2个。无涂色的…,我是用总的去减的,可是我不会化简。(这时,有人把手举得高高的,教师示意起立回答)
学生:无涂色的,在正方体的中间,它切开之后,其实是一个正方体,正方体的边长就是(n-2),所以里面有(n-2)3个正方体。
教室里响起了热烈的掌声,学生们都高兴的表示赞同。
师生共同完成表格并且从表格中寻找数字之间的关系。
练习:求代数式的值
若三面涂色数为A,二面涂色数B,一面涂色数为C,无面涂色数为D,则
(1)用含n的代数式BC-AD的值
(2)并选一你喜欢的n值代入求出答案
【点评】
教师A:数学活动课是苏科版教材的一个特点,我们一线教师都尝试着去上好这样的课,但是由于教学任务,教学进度的要求,
往往在实际中教学忽视了活动课的重要性。通过今天这堂数学活动课,让我们看到了学生一种新的学习面貌,这种面貌完全异于平时。也从一个侧面反映了新课程理念下要求我们确实应该发挥学生的这种主观能动性,苏科版教材体现的课改理念是我们数学教师都应该积极思考的问题。正方体涂色这堂数学活动课,教师给学生设置了闯关游戏,环环相扣,内容衔接非常紧凑,问题由浅入深。学生在教师的指导下,自己通过合作分工,相互配合,从动手到动脑,做到在“做中学”,达到了预期的目的,这是非常不错的一堂活动课。
教师B:这堂课教师通过分组,让学生自己动手,结合多媒体演示,达到了非常好的效果。作为数学活动课,能真正做到了以学生为主体,教师是学生获取知识的指导者,是辅助学生掌握新知的辅导员。这堂课中借助的多媒体动画演示给学生展示了一个动态的分割过程,这对于培养学生的空间想象能力有很大的帮助,缺少了动态演示,将会使得最后的公式推导显得很苍白无力。数学活动课辅助多媒体教学是我们所倡导的有效课堂,有效教学的一个有效途径。
市教研员:今天的数学活动课上的很精彩,让我们看到了一个全新的数学课堂。这样的活动课程正是新课程改革的与有效课堂擦出的火花,我们应该学习这样的上课理念,让我们的数学不在像以往一样呆板,也会向今天一样充满活力与魅力。数学活动课的开展,不仅能丰富数学课教学内容,全面锻炼学生各方面的能力,提高教学质量,为了提高数学活动课的质量,在设计数学活动课的过程中,还应注意以下问题:
①不是所有的数学课都设计成数学活动课。一般来说,对那些操作性、应用性强的数学课,采用活动课形式效果比较好。
②制定切实可行的活动计划。开展数学实践活动课,一般应该在教师的指导下完成,因而教师要充分挖掘教材中可以利用的教育因素,紧密联系学生的学习、生活实际,以及学生知识水平、认知能力,努力做到目的明确、计划周密、活动可行。
③数学活动课要注重突出学生的主体地位。学生是学习的主体,是活动的主体。在开展数学活动课过程中,要求教师把学习的主动权和个性发展权还给学生。教师要由知识的传授者转变为活动的组织者、指导者和参与者。教师要更多地关注活动目标的导向、动机的激发、情景的创设、方法的指导、疑难的解答等,不能包办学生完成活动。
课题:数学活动课——正方体的涂色
【教学目标】
1.从平面引入立体图形,让学生初步体会平面与立体之间的关系
2.丰富空间观念,发展空间想象能力,对正方体有更进一步的体验与理解
3.培养学生归纳的思想
4.让学生动手操作,仔细观察,认真思考,合作交流,顺利闯关
课前准备:学生每人准备一个萝卜或者土豆或者南瓜制作的边长为3至5厘米的正方体一个,彩色水笔一支,小刀一把。教师同样准备正方体一个,同时准备多媒体课件。
【教学过程及教学片断】
1.新课引入
学生回忆正方体的特征--正方体有6个面,12条棱,8个顶点,面积和体积的计算公式。
2.学生动手,探索实践
第一关:①将一个正方形分割成面积相等的四个小正方形。
②将一个正方形分割成面积相等的9个小正方形,16个面积相等的小正方形?分割成 ______个小正方形?
具体要求:请同学自己动手画图,并用语言叙述。教师:根据学生的叙述,动态添加分割线,并用多媒体演示分割过程。
第二关:①把一个正方体每条棱2等分,按照上题的分割方法,把正方体切开,可得到多少个小正方体?②把一个正方体每条棱3等分,切开以后可得到多少个小正方体?4等分呢?n等分呢?
教师利用多媒体课件展示分割过程,让学生从运动的角度观察正方体的分割展开。
第三关:动手操作
①把正方体每条棱2等分,并且把表面涂上颜色,切开以后观察,3个面涂色的正方体有几个?2面涂色的小正方体有几个?1面涂色的小正方体有几个?各面无涂色的小正方体有几个?
活动要求:前后4个学生为一个小组,一名学生负责切正方体,2名同学负责清点,1名同学负责记录,并设置组长1名,协调小组成员之间合作关系,提高活动效率。
②把正方体每条棱3等分,4等分,分别清点完成表格:
猜想每棱5等分时,各组数据?
教师运用多媒体演示分割过程,采用分层的方法。
学生根据分层的思想,填写表格:
思考:每棱n等分是,情况又如何呢?
【教学片断】
师:怎么通过列表或者图片寻找规律呢?
生:三面涂色的个数始终不变都是8个。因为三面涂色的都处于定点处,不管如何变化定点处的小正方体是不变的。至于其他的,我还没有找到规律。
师:刚才这位同学回答非常正确,通过列表和图片我们很容易发现这样一个规律,那么二面涂色的正方体个数又如何呢?你们能否从图中看出某些关系吗?
生:二面涂色的在棱上除顶点外,每条棱n等分后每条棱上两面涂色的正方体数是n-2个,一共12条棱所以是12( n-2)个;
这时候班上的学生开始讨论开了,不久就有几个同学跃跃欲试抢着发言。
生:一面涂色的正方体在六个面中间,除顶点和棱上,每一面上对应有(n-2)2个,所以总数是6(n-2)2个。无涂色的…,我是用总的去减的,可是我不会化简。(这时,有人把手举得高高的,教师示意起立回答)
学生:无涂色的,在正方体的中间,它切开之后,其实是一个正方体,正方体的边长就是(n-2),所以里面有(n-2)3个正方体。
教室里响起了热烈的掌声,学生们都高兴的表示赞同。
师生共同完成表格并且从表格中寻找数字之间的关系。
练习:求代数式的值
若三面涂色数为A,二面涂色数B,一面涂色数为C,无面涂色数为D,则
(1)用含n的代数式BC-AD的值
(2)并选一你喜欢的n值代入求出答案
【点评】
教师A:数学活动课是苏科版教材的一个特点,我们一线教师都尝试着去上好这样的课,但是由于教学任务,教学进度的要求,
往往在实际中教学忽视了活动课的重要性。通过今天这堂数学活动课,让我们看到了学生一种新的学习面貌,这种面貌完全异于平时。也从一个侧面反映了新课程理念下要求我们确实应该发挥学生的这种主观能动性,苏科版教材体现的课改理念是我们数学教师都应该积极思考的问题。正方体涂色这堂数学活动课,教师给学生设置了闯关游戏,环环相扣,内容衔接非常紧凑,问题由浅入深。学生在教师的指导下,自己通过合作分工,相互配合,从动手到动脑,做到在“做中学”,达到了预期的目的,这是非常不错的一堂活动课。
教师B:这堂课教师通过分组,让学生自己动手,结合多媒体演示,达到了非常好的效果。作为数学活动课,能真正做到了以学生为主体,教师是学生获取知识的指导者,是辅助学生掌握新知的辅导员。这堂课中借助的多媒体动画演示给学生展示了一个动态的分割过程,这对于培养学生的空间想象能力有很大的帮助,缺少了动态演示,将会使得最后的公式推导显得很苍白无力。数学活动课辅助多媒体教学是我们所倡导的有效课堂,有效教学的一个有效途径。
市教研员:今天的数学活动课上的很精彩,让我们看到了一个全新的数学课堂。这样的活动课程正是新课程改革的与有效课堂擦出的火花,我们应该学习这样的上课理念,让我们的数学不在像以往一样呆板,也会向今天一样充满活力与魅力。数学活动课的开展,不仅能丰富数学课教学内容,全面锻炼学生各方面的能力,提高教学质量,为了提高数学活动课的质量,在设计数学活动课的过程中,还应注意以下问题:
①不是所有的数学课都设计成数学活动课。一般来说,对那些操作性、应用性强的数学课,采用活动课形式效果比较好。
②制定切实可行的活动计划。开展数学实践活动课,一般应该在教师的指导下完成,因而教师要充分挖掘教材中可以利用的教育因素,紧密联系学生的学习、生活实际,以及学生知识水平、认知能力,努力做到目的明确、计划周密、活动可行。
③数学活动课要注重突出学生的主体地位。学生是学习的主体,是活动的主体。在开展数学活动课过程中,要求教师把学习的主动权和个性发展权还给学生。教师要由知识的传授者转变为活动的组织者、指导者和参与者。教师要更多地关注活动目标的导向、动机的激发、情景的创设、方法的指导、疑难的解答等,不能包办学生完成活动。