论文部分内容阅读
传统的股票关联预测主要是通过数据分析与简单的回归预测的方法来进行,这种技术无法全面的对多只股票之间的变化关联进行分析预测,造成了股票走势的预测准确率不高,时效性不强的缺点.本文提出协同微粒群的股票关联规则挖掘方法,对股票属性数据进行特殊的预处理.将PSO粒子群优化的高度智能搜索技术与关联挖掘优点结合进行股票的关联预测,将粒子群划分为不同功能的粒子群进行关联分析.实验仿真结果证明,本文的算法较传统的关联规则挖据算法和PSO粒子群优化算法在准确率与挖掘速率上有很大的提高,能有效反应股票的实时变化,对实际的股票