一类Caputo分数阶微分方程正解的存在性

来源 :河北科技大学学报 | 被引量 : 0次 | 上传用户:wyhai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:为了研究一类带p-Laplacian 算子的Caputo分数阶微分方程边值问题正解的存在性,通过计算得到该问题的格林函数,并讨论其性质。运用单调迭代方法,得到该边值问题至少存在2个正解,最后通过实例验证了此类方程边值问题正解的存在性。
  关键词:常微分方程其他学科;Caputo分数阶微分;正解;单调迭代方法;边值问题
  中图分类号:O175.1 MSC(2010)主题分类:34B15 文献标志码:A
  Abstract: In order to investigate the existence of positive solutions to a class of Caputo fractional differential equation boundary value problems with p-Laplacian operator, the Green’s function is obtained by calculus, and its properties are discussed. By using monotone iterative technique, at least two positive solutions are obtained for the boundary value problems. An example is given to illustrate the existence of positive solutions to this kind of equation boundary value problems.
  Keywords:ordinary differential equation; Caputo fractional derivative;positive solution;monotone iteratiation;boundary value problems
  参考文献/References:
  [1] AHMAD B, MATAR M, AGARWAL R. Existence results for fractional differential equations of arbitrary order with nonlocal integral boundary conditions[J]. Boundary Value Problem,2015,220:1-13.
  [2] ZHANG Lihong, AHMAD B, WANG Guotao,et al. Nonlinear fractional integro-differential equations on unbounded domains in a Banach space[J]. Journal of Computational and Applied Mathematics,2013,240:51-56.
  [3] ALBERTO C, HAMDI Z. Nonlinear fractional differential equations with integral boundary value conditions[J]. Applied Mathematics and Computation,2014,228:251-257.
  [4] VONG S. Positive solutions of singlular fractional differential equations with integral boundary conditions[J]. Mathematical and Computer Modelling,2013,57: 1053-1059.
  [5] SOTIRIS K N, SINA E. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation,2015,266: 235-243.
  [6] KOU Chunhai, ZHOU Huacheng, YAN Ye. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis[J]. Nonlinear Analysis,2011,74: 5975-5986.
  [7] CUI Yujun. Uniqueness of solution for boundary value problems for fractional differential equations[J]. Applied Mathematics Letters,2016,51:48-54.
  [8] ZHANG Lihong,AHMAD B, WANG Guotao. The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative[J]. Applied Mathematics Letters,2014,31:1-6.
  [9] LI Yunhong, LI Guogang. Positive solutions of p-Laplacian fractional differential equations with integral boundary value conditions[J]. Journal of Nonlinear Science and Applications,2016,9(3):717-726.   [10]ZHAI Chengbo, XU Li. Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter[J]. Communications in Nonlinear Science Numerical Simulation,2014,19:2820-2827.
  [11] XU Xiaojie,FEI Xiangli. The positive properties of Green’s function for three point boundary value problems of nonlinear fractional differential equations and its applications[J]. Communications in Nonlinear Science Numerical Simulation,2012,17(4):1555-1565.
  [12] NTOUYAS S, ETEMAD S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation,2015,266:235-243.
  [13] 李云红,李艳. 带p-Laplacian算子的分数阶微分方程的正解[J].河北科技大学学报,2015,36(6):593-597.
  LI Yunhong,LI Yan. A positive solution for the fractional differential equation with a p-Laplacian operator[J]. Journal of Hebei University of Science and Technology, 2015,36(6):593-597.
  [14] ZHANG Xinguang, LIU Lisan, WIWATANAPATAPHEE B, et al. The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition[J]. Applied Mathematics and Computation,2014,235:412-422.
  [15]AMKO S G,KILBAS A A,MARICHEV O I. Fractional Integrals and Derivatives: Theory and Applications[M]. Switzerland: Gordon and Breach,1993.
  [16]PODLUNY I. Fractional Differential Equations, Mathematics in Science and Engineering[M]. New York: Academic Press,1999.
其他文献
中国钢铁行业产能过剩、经济效益低,供过于求的现状短期难以改变,尽管国家出台了经济刺激政策,但钢铁企业降低生产成本、调整结构、提高市场竞争力,还需做出巨大努力。如何化危机
报纸
提出了一种基于数据挖掘和同调分群的相量测量单元的优化配置方法,在对各种运行方式和故障场景进行穷尽式仿真后,通过免疫聚类算法对各种动态场景进行同调性分析,由于故障场景数目庞大,直接计算适合所有场景的分群结果就变得十分复杂,此时再对所有场景下的同调性分析结果先利用粗糙集在保持分类能力不变的条件下删除冗余信息进行场景压缩,最后对剩余场景进行简单组合就可以方便、简单地得到适合各种场景的同调分群方案。仿真分
摘要:  蛋白质二级结构与蛋白质三级结构及蛋白质功能密切相关,是生物信息学研究的热点,其中概率图模型隐马尔可夫算法(HMM)是该领域研究的重要工具。但是在实际应用中,存在着HMM训练下溢、不同训练集的效果差异较大及参数优化困难等问题。对预测蛋白质二级结构时HMM遇到的训练下溢问题提出了改进方案;首次提出8状态HMM来预测蛋白质二级结构,并且将参数B改进成为包含状态转移信息的三维参数;为了改进最优H