论文部分内容阅读
设Ω是RN(N≥5)中的有界光滑区域,0∈Ω,0≤s<4,2*(s):=2(N-s)/N-4是临界Sobolev-Hardy指数,f(x)是一个给定的函数.利用变分原理,证明了当f(x),λ,μ满足一定条件时,带有Dirichlet边值条件的奇异临界非齐次问题△2u-μu|x|4=|u|2*(s)-2/|x|su+λu+f(x)解的存在性.