【摘 要】
:
针对飞行仿真转台伺服系统中存在的非线性摩擦干扰进行了研究,采用一种基于RBF神经网络进行误差补偿的在线自适应控制策略。在基于逆动力学的计算力矩控制方法的基础上,利用R
论文部分内容阅读
针对飞行仿真转台伺服系统中存在的非线性摩擦干扰进行了研究,采用一种基于RBF神经网络进行误差补偿的在线自适应控制策略。在基于逆动力学的计算力矩控制方法的基础上,利用RBF神经网络的万能逼近特性在线辨识模型误差,从而对系统进行补偿,其权值自适应律根据Lyapunov稳定性理论推导,保证了系统跟踪误差的收敛及稳定。仿真结果表明该控制策略可使位置MAE指标从0.0087 m提高到0.0016 m,使位置MSE指标从1.0128E-4 m提高到3.3002E-6 m,具有较高的鲁棒性和稳态控制精度。最后分别从隐层
其他文献
对名词短语的事件指代消解进行研究,使用平面特征、结构化句法特征和语义特征等,根据SVM机器学习的方法进行英文事件的指代消解,通过在计算事件语义相似度的元组(语义角色)中加入
强化学习领域的一个研究难点是在大规模或连续空间中平衡探索和利用的问题。针对该问题,应用函数近似与高斯过程方法,提出新的行动者评论家(actor-critic,AC)算法。该算法在act
针对大尺度形变医学图像配准速度慢和精度低的特点,提出一种结合薄板样条(TPS)和B样条的弹性配准方法。该方法采用尺度不变特征变换算法(SIFT)进行图像特征提取与匹配,利用TPS算法将特征点对作为输入进行预处理,以降低浮动图像的形变尺度,从而提高下一步B样条配准的速度与精度。然后使用局部区域细化层次B样条方法将TPS生成的较稀疏的形变网格作为初始网格,结合有限记忆优化算法(L-BFGS)对控制网格
尝试将word embedding和卷积神经网络(CNN)相结合来解决情感分类问题。首先,利用skip-gram模型训练出数据集中每个词的word embedding,然后将每条样本中出现的word embedding
针对粗糙K-均值算法的执行效率较低和对数据对象的处理不准确问题,提出了基于加权距离计算的自适应粗糙K-均值算法。该算法在粗糙集理论应用的基础上修正数据集合的隶属度函
提出一种基于先验信息的脑功能网络提取方法。该方法基于先验信息得到初始的目标和背景种子点,然后基于图论将整个脑图像构建图,最后利用半监督聚类技术提取脑功能网络。基于
针对文本数据维度较高、空间分布稀疏及其聚类效果不佳的问题,提出一种基于增强蜂群优化搜索与K-means的高效文本聚类算法。首先为蜂群算法引入公平操作与克隆操作来提高全局
针对多种负载预测方法的适用场景进行了研究,提出了一种负载预测与过载迁移的融合算法。该算法提前对周期内无法提取到的负载情况进行预测且对超过负载阈值的服务器进行告警,