Hopf和Co—Hopf对象

来源 :西北师范大学 | 被引量 : 1次 | 上传用户:cker
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文中,我们对模和环范畴中的Hopf、Co-Hopf、广义Hopf、弱Co-Hopf对象进行了进一步的研究.第一章我们讨论了Hopf模和Co-Hopf的基本性质.受Hopf模和Co-Hopf模研究方法的启发,在第二章中我们讨论了广义Hopf模和弱Co-Hopf模的相应基本性质.在第三章中我们讨论了Hopf环上形式幂级数环、平凡扩张环的Hopf性质和广义Hopf环上多项式环以及直积的广义Hopf性质.
其他文献
本文讨论了等式约束多目标规划问题的降维算法以及最优化算法在实际工程技术模型中的应用,为多目标规划算法的研究提供了一种新途径。首先本文利用线性加权和的方法将多目标规
广义对角占优矩阵在很多领域都有应用.判断一个矩阵A是否为广义对角占优矩阵具有广泛的实际背景和很强的理论价值,对广义对角矩阵的判定这个课题引起了很多学者的关注,并取得了
本文主要研究投射半模和平坦半模等一些重要的半模类,以及基本的半模函子,如态射函子和张量函子.讨论分式半模与半模的局部化.全文共分三个部分. 在第一部分,首先研究Hom
本文主要研究了两类模糊优化问题——系数为模糊数的模糊线性规划与模糊关系约束优化.下面简要介绍本文的主要研究结果.第2章主要讨论了一类在约束条件中系数为模糊数的模糊
本文的主要工作由两部分组成.第一部分,首先,定义了一种新的半正定非线性规划问题——半正定乘性规划,并设计了半正定规划的OAE算法;其次,指出半正定乘性规划可以看作一种特殊的几
  Feigenbaum首先发现在倍周期分岔传递到混沌的过程中,具有惊人的数量普适现象。为解释这一现象,Feigenbaum提出许多假设,其中一个重要的假设是如下函数方程存在解的假设。方