论文部分内容阅读
要理解一个复杂的生物学系统,对活体细胞内的分子及其相关事件以高的空间和时间分辨率实现可视化、跟踪和定量处理是必不可少的。这就要求作为细胞内生命活动直接可视化工具的光学显微镜必须具备几个特点:分子识别、纳米的空间分辨、单分子的探测灵敏度、μs乃至ps的时间分辨。后面两项要求,灵敏度和时间分辨主要是对探测器的要求。至于前面两项要求,对于荧光显微成像来说,由于荧光探针可对特定生物分子进行特异性标记,因此具有良好的分子识别能力。在空间分辨率方面,传统的荧光显微成像受到衍射极限的限制。然而,随着激光技术、分子探针材料、荧光标记技术、弱光探测技术的不断发展,新的成像方法和手段不断被提出和实现,曾经认为不可逾越的极限分辨正在通过各种渠道被打破。本论文在深入调研和分析目前纳米分辨光学成像方法的基础上,考虑到未来应用于活细胞及其间的动态过程研究的可能性,本论文重点研究图像信息获取速率高的宽场成像方法,即结构光照明和单分子定位三维纳米分辨显微成像,并试图在方法上解决厚样品纳米分辨显微成像问题。现将已完成的工作总结如下:(1)基于可编程的数字微镜器件(Digital Mirror Device, DMD)的结构光照明显微成像研究本论文采用可编程器件DMD代替光栅,作为结构光照明装置,用计算机编程控制DMD上的微镜on/off状态,来获得所需的结构光照明光栅图案及相应的相移,从而替代光栅相移所需的机械平移装置,通过不同的算法提高轴向和横向空间分辨率。利用一个简单的小孔作为低通空间滤波装置,使得结构光图案的各级衍射中,只有0级和正负一级衍射通过。在这种照明条件下,使用改进后的层析算法,通过5步相移法获得了两个不同层析能力的层析图像。结果表明在重构的层析图像中,离焦信息可以被有效滤除。同时,在模拟结果的基础上,利用结构光照明实现了对生物样品的超分辨成像。(2)单分子定位显微成像研究本论文在一定衍射极限下,模拟并分析了单分子被探测到的光子数、探测器有效像元大小和背景噪声不同时,单分子定位精度的变化。用Matlab程序实现了单分子定位显微的模拟成像及图像重构。采用单分子模型和呈线条排列的分子模型进行模拟。单分子模型蒙特卡洛模拟的分辨率与解析理论结果几乎一致。而对成条带排列的分子模型的模拟结果表明,该程序可分辨中心间隔为20 nm的两条分子带。在Ⅸ71倒置荧光显微镜上,利用640nm波长的光同时作为激活光、去激活光和激发光,实现了单分子定位纳米分辨显微成像,实测空间分辨率达到48nm。在源图像重构程序验证和系统稳定性验证的基础上,实现了对HeLa细胞突起中微丝束结构的纳米分辨成像。(3)双波长非相干光干涉照明实现轴向选择性激发研究本论文分析了单分子定位显微成像用于厚样品成像时存在的问题,表明在现有条件下,由于非焦平面被激发分子的荧光干扰带来的背景噪声,导致其成像深度是有限的。目前,国际上通过斜照射获得的纳米分辨样品厚度不超过3微米。为了解决此难题,本论文提出利用单一薄层的轴向选择性激发的技术途径。其核心是双波长非相干光干涉照明实现轴向选择性激发。利用多数开关分子所具有的开关速率随激活光、去激活光成正比的特性,通过轴向调制的激活光(焦平面强度为极大值)和去激活光(焦平面强度为极小值)配合,利用轴向不同位置上激活光和去激活光的强度比变化,实现荧光分子处于荧光态概率的轴向调制。当去激活光为空间非相干光时,可以实现单一薄层的选择性激发。在对其中几个关键技术讨论的基础上,本论文对双波长非相干光干涉照明实现轴向选择性激发进行了论证:采用这种照明方式,开关分子处于荧光态的概率沿轴向的分布中只有一个峰,最大值位于焦平面,该峰的FWHM约为35nm;在除焦平面上下几十纳米的范围之外,开关分子处于荧光态的平均概率只有焦平面处概率的6%以下。模拟结果表明该照明方式可以极大地抑制背景噪声。本论文的主要创新点在于,针对单分子定位显微用于厚样品成像时存在的非焦平面噪声问题,创造性地提出双波长非相干光干涉照明方法,理论证明了其可用于实现对厚样品内任意深度上厚度约为35nm的单一薄层的轴向选择性激发,从而实现了对背景噪声的抑制。该轴向选择性激发方法结合三维纳米定位及轴向扫描,有望实现对完整细胞等厚样品的三维纳米分辨显微成像。