甲基环己烷为氢源催化CO2加氢为CO和CH4安全反应研究

来源 :河北工业大学 | 被引量 : 0次 | 上传用户:archxws
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二氧化碳(CO2)是造成温室效应的主要成分之一,但也是一种无毒、廉价的碳源。逆水煤气变换(RWGS)反应是将CO2转化的有效手段之一,但其存在低温下CO2转化率低,而高温下催化剂热稳定性差和选择性低的缺陷。甲基环己烷(MCH)是一种常用储氢介质,可为RWGS反应提供原料,避免使用危险气体氢气;同时,耦合反应的反应条件更加温和。首次提出了RWGS耦合甲基环己烷脱氢反应工艺,并对该反应体系进行了热力学分析。结果表明逆水煤气变化反应与甲基环己烷脱氢反应耦合工艺在热力学上可行。计算了已有低碳烷烃(乙烷、丙烷等)和乙苯脱氢耦合RWGS反应热力学的可行性,并梳理了现有成果与平衡转化率之间的差异。进一步考察了研究较少甚至尚未研究的正丁烯、环己烷、甲醇和5-羟甲基糠醛脱氢反应耦合RWGS反应的热力学可行性。进一步在固定床反应器中进行RWGS耦合甲基环己烷脱氢反应的性能评价。考察了Pt/γ-Al2O3催化剂制备条件及反应条件对耦合反应性能的影响。在35℃、0.1MPa、MCH/CO2=3、LHSV=6h-1时,MCH和CO2转化率最高可达72.2%和24.7%,甲苯和CO选择性均高于95%,且在40h内能保持较高的稳定性。与单独RWGS、MCH脱氢反应相比,耦合反应在CO2转化率提高了11.4%,但MCH转化率低于载气为N2的MCH脱氢反应,单独脱氢反应和转化率为85.6%。提出了CO2甲烷化耦合甲基环己烷脱氢反应。在Ni/γ-Al2O3催化剂负载量为10wt.%、400℃、0.1MPa和MCH进料量为0.1m L/min的条件下,MCH转化率为75.9%,CO2转化率为65.5%,甲苯选择性为99.0%,CH4选择性为94.6%。对Ce-Ni/γ-Al2O3催化剂进行催化性能考察,发现添加Ce的催化剂明显加强了对CO2甲烷化耦合甲基环己烷脱氢反应的活性,MCH转化率为85.4%,CO2转化率为76.8%,TOL选择性为99.5%,CH4选择性为95.1%。
其他文献
由于具有独特的物理化学性质,二维材料,例如石墨烯、二维BN、黑磷、二维过渡金属碳氮化物(MXene)和过渡金属硫化物(TMDS)等,受到了研究人员的广泛关注。其中,MXene是一类性能优异的二维纳米材料,在能源材料、环境技术、光电子器件等领域具有广泛应用前景。本论文围绕着MXene/MoS2纳米复合材料的设计、制备以及相关性能展开了研究工作。通过实验研究了MXene以及MXene/MoS2纳米复合
工业生产过程中产生的废水的循环利用是工业节水与工业废水减排的迫切需求。在电厂的循环冷却水处理过程中,循环冷却水中的Ca2+、Mg2+、硅(Si O2胶体、分子态硅酸以及少量硅酸盐等)等无机物质和有机物质随着水分蒸发而富集浓缩,易生成传热系数较低的Ca CO3·Si O2垢和硅酸镁垢,需要通过去除Ca2+、Mg2+和硅来提高冷却水的循环利用次数,提高浓缩倍率,减少补充水量及循环冷却水的排出量。本论文
化石燃料的广泛利用造成了大气中CO2浓度的持续增加,给地球环境和人类活动带来了严重威胁,因此,捕获和分离CO2是一个刻不容缓的问题。目前寻找具有高CO2吸附容量、良好选择性和强再生能力的新型吸附材料是科学界的研究热点。多孔氮化硼(p-BN)具有高比表面积、丰富的孔道结构以及高的稳定性,并且自身具有一定的CO2吸附能力,在CO2气体吸附领域已有着较深入的研究,但p-BN对CO2的选择性较低。为了解决
集成电路(IC)工艺技术是推动我国集成电路不断发展的重要基础,化学机械平坦化(CMP)是IC制造的关键工艺之一,是目前唯一能够实现全局和局部平坦化的技术。在14nm及以下技术节点以下,Co对Cu具有良好的扩散阻挡性和粘附性,是极具竞争力的新的阻挡层材料之一。随着器件特征尺寸的不断缩小,阻挡层的厚度不断减小,在IC制程的阻挡层CMP过程中,存在着Cu/Co去除速率及去除速率选择性难以控制,电偶腐蚀严
产品是功能的载体,人们需要的是产品的功能,而不是产品本身。功能的产生是由于物质的相互作用,进一步是由于物质存在相应属性,属性的相互作用产生某些效应,反应到作用对象上即为功能。物质属性是功能产生的基础,是功能表达的本质所在。本文以物质属性为基础对技术系统中的冲突问题进行分析与解决,通过物质属性与问题分析方法相结合,提高了问题的分析效率,从属性的角度将TRIZ解题工具进行整合、提炼与升华,提高了冲突问
因为市场的持续进步,集成电路(IC)作为半导体工业的焦点,其工艺复杂性也越来越高。在技术节点已经进入3 nm节点的现在,国际对IC中晶圆的性能要求越来越高,多层金属互连层数也越来越多,对每一层互连线之间的平坦化性能提出了更高的挑战。本论文在国家02重大专项的支持下,对现有的碱性抛光液CMP后的表面质量进行研究,主要目标是实现多层铜互连阻挡层低的表面粗糙度。下面是论文的主要研究内容:1.论文对抛光液
随着人了社会的发展和进步,化石燃料的大量使用和抗生素的滥用,使温室效应,能源危机和环境污染等日益加剧。近年来,光催化作为有望解决或缓解以上一系列问题的技术,成为研究热点。其中,石墨相氮化碳(g-C3N4)因具有可见光响应能力,并且环保、无毒、廉价而受到广泛关注。但g-C3N4本身可见光利用率低,仅对可见光中的蓝紫有光响应,并且光生电子与空穴复合率高,这些导致g-C3N4的光催化能力较差。通过提高g
钛(Ti)和Ti合金具有诸多优异的理化性能,如低密度(密度只有钢和镍基超合金的一半)、高比强度、生物相容性良好、耐腐蚀性及抗疲劳性能优越等,在军事航空、生物医学、化工能源等领域得到了广泛的应用。锆(Zr)与Ti属于同一主族元素,二者具有相似的性质和结构。由于两种元素易在合金表面生成稳定的钝化膜,其均具有较高的耐蚀性,而且在Ti合金中加入适量的Zr可以提高合金的强度和耐腐蚀性能。Ti Zr基合金已成
木质素是一种潜力巨大的可再生生物质资源,结构上由各苯丙烷单体通过C-C健以及C-O键相互连接、交错而成,碳含量极为丰富,2015年,美国能源部将木质素的高附加值利用定为生物质资源炼制的核心。当前,最普遍有效的木质素利用方法是化学降解法,可将木质素大分子间单体间的连接键进行断裂以生成小分子单酚类化合物,以此实现木质素的资源化利用。低共熔溶剂是一种可生物降解的环保型溶剂,由氢键供体和氢键受体按一定摩尔
有机发光二极管(OLED)具有效率高、色纯度好、视角广、响应速度快、轻薄、可挠等优点,在平板显示和照明领域有着广阔的应用前景,从而引起产业界和学术界的高度关注,成为当前的一个前沿热点。为进一步降低OLED的驱动电压,提高其产品的市场竞争力,本论文发展了电掺杂有机发光二极管(p-i-n OLED)的结构,以及一种n型掺杂复合材料,以期解决目前OLED存在的自热效应缺陷,推动OLED显示和照明技术的发