不等速双液滴同时撞击超疏水表面的动力学特性研究

来源 :华北电力大学(北京) | 被引量 : 0次 | 上传用户:liqing804240
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
液滴撞击壁面是自然界常见的现象,同时超疏水表面因其独特的润湿性,在自清洁、防结冰、防腐蚀等领域有着巨大的潜力,受到了众多学者的青睐。然而,目前有关液滴撞击动力学特性的研究主要集中在单液滴撞击超疏水表面动力学特性,多液滴的撞击过程由于涉及到液滴之间的合并行为,使其中蕴含的机理更为复杂,所以对其撞击动力学特性的研究较少。但是在实际工程应用中多液滴撞击现象更为普遍,同时双液滴撞击作为多液滴撞击的典型代表,了解其动力学特性将为实际工程应用提供重要的理论依据。本文主要通过LBM数值模拟的方法,研究了液滴的撞击参数与表面的几何参数对双液滴撞击超疏水表面动力学特性的影响,揭示了其在使液滴发生偏移、减少液滴与表面的接触时间、改变液滴反弹形态等方面的原理,主要研究成果如下:首先,研究发现,当双液滴以不同速度同时撞击超疏水表面时,其动力学特性发生改变。完全合并后的液滴不再如等速度时垂直弹离表面,反而会发生一定程度上的偏移,且偏向速度更大的液滴一侧;当双液滴之间的速度比改变时,液滴的偏移也会发生改变。而当双液滴的间距减小时,由于液滴间的相互作用力降低,导致了偏移程度的减小;同时考虑到实际应用中,表面往往不是完全水平的,进而探讨了表面倾角对偏移程度的影响,发现随着表面倾角的增大,液滴的偏移程度也在逐渐增大。其次,虽然上述因素使液滴发生偏移,但是偏移程度相对较小。然而,如果可以使液滴偏移程度进一步增大,那么将有效地减小液滴的堆积,对农业生产、航空航天等领域有着重要意义,因此本文通过在光滑超疏水表面构建脊状阵列结构,增大了液滴的偏移程度,而且发现速度比同样会改变液滴的偏移,并指出不等速液滴在结构内的毛细清空时间的差异性是偏移增大的原因,同时对产生差异性的原因进行了理论分析,推导了毛细清空时间的计算公式。还研究了脊状阵列高度对液滴动力学特性的影响,发现脊状高度会显著影响清空时间,并对其进行了理论分析,推导了对应的清空时间公式,并且同样分析了表面倾角对动力学特性的影响。最后,发现改变脊状阵列高度与撞击速度将会对液滴的反弹形态与接触时间产生影响,并系统分析了其中的原因,同时构建了液滴的反弹形态相图。
其他文献
光与物质之间的相互作用是人类认识自然,研究、调控和利用物质世界的重要手段。从普朗克提出黑体辐射理论到激光物理的诞生,再到量子传感器,核磁共振,量子信息等技术的兴起,光与物质之间的相互作用都起着非常重要的作用。近年来,人们在有机分子体系、超导量子电路、半导体极化基元、光机械系统等物理体系中实现了光与物质之间的超强耦合,这为量子纠缠、非线性光学、量子化学等相关研究提供了实验基础。本学位论文中,我们研究
强磁场下的量子色动力学(QCD)相变的研究可以深化我们对宇宙早期演化、致密天体构成和非对心重离子碰撞的认识。物理学家Roberge和Weiss(RW)发现虚化学势μ=iθ/β的SU(N)规范理论的配分函数是θ的周期函数,高温下θ=(2k+1)π/N处存在一级相变。RW相变的研究有助于更好地理解在有限密度下的QCD退禁闭相变。众所周知强磁场会导致夸克凝聚的低温磁催化效应(夸克凝聚随磁场增强)与高温反
流化床由于构造简单,操作简便,在能源化工等领域的燃烧、物质分离与混合、制粒等过程中被广泛应用。流化床的混合、传热、传质效率高,其内部气固两相间的剧烈反应对床内能量与动量的传递过程存在影响,直接决定了流化反应速度和效率。实际工业过程中,流化床内的物料多为在粒径和密度上存在差异的复杂多元颗粒。然而目前对流化床的数值模拟研究多为对单一组分或双组份颗粒的探索,对于超过两种组分的多元颗粒的研究工作还不够完善
近年来,为推动一次能源消费结构转型,减少弃风弃光电量,提高新能源发电利用率,储热技术得到了广泛研究和关注。储热技术的主要技术路线之一是通过蓄热式电锅炉将多余的新能源发电量以热能的形式存储起来,在热负荷高峰时释放,突破能量利用的时空限制,扩宽新能源发电的消纳空间。蓄热式电锅炉装置的核心为储热材料,因此开发一种具有较好结构性能和储热性能的储热材料,已成为近年来研究的热点。本文选用NaCl-KCl作为相
液滴的受控迁移对于微流体在工业和科学研究中具有重要的意义。本论文针对热毛细力或重力作用下基板上的液滴的迁移过程进行深入的数值模拟,获得不同条件下液滴的迁移规律。首先基于汽液界面捕捉的Level Set方法,建立了基板上液滴运动的三维非稳态数学模型,并成功实施了液滴和固体基板的接触角的三维处理,将数值模拟结果与理论解进行了对比,验证了所建立模型的正确性。其次,分析了在温度梯度产生的热毛细力的作用下,
随着科学研究的不断进步,光学位移测量技术得到了空前的发展。光学位移测量技术因其高精度、高灵敏度、非接触、结构简单、易于操作、测量速度快以及低成本的优势而被广泛应用于材料分析与检测、运动的观测追踪与轨迹分析、机械制造、生命科学工程等诸多领域。光流的概念在20世纪五十年代被提出以后,随着光流的数学表达式的推出以及各种光流算法的研发与发展,长久地活跃于计算机视觉领域,被广泛应用于运动物体的检测,分析,跟
多相流存在于我们生活当中的各个方面,无论是能源化工等生产方面,同时也存在于自然环境当中,但是多相流的流动是复杂的,对于多相流的研究还有许多难点要攻克,对于多相流参数的检测对我们的生产生活有着巨大的作用,计算流体力学(Computational Fluid Dynamics,CFD)的出现大大提升了人类对于多相流的研究,通过CFD计算出流体流动的数值解,CFD已经成为了研究流体流动的一种成熟方法。本
图的极小顶点覆盖问题(MVCP)在图论中是一个经典的组合优化问题,并且在实际问题中有非常广泛的应用。本文针对大规模图顶点数目增加、边数目增加和顶点与边数目均增加3种动态过程,设计了能够在原图极小顶点覆盖的基础上更新增量后图的极小顶点覆盖的算法。提出的算法考虑了图结构中顶点与边的关系,并采用邻接矩阵的方法对其进行存储,在图结构发生增量变化后,在原极小点覆盖的基础上添加或者删除若干个不必要的顶点来更新
图论是以图为研究对象,把事物用点表示,事物之间的联系用边表示,以探究事物之间的关系为目的的一门非常有价值的学科。近年来,图论是数学中非常重要且发展较快的一个分支,图的控制数理论又是研究图论非常重要的一个部分。图的控制理论的研究帮助我们解决了大量生活中的实际问题,例如救助设备的投放、社会网络等问题。本篇论文我们做的是关于图的控制参数的理论研究,给出几类图的某一种控制数的准确值。在第一章中,我们介绍了
本文对主要适用于二阶微分方程的首次积分方法进行推广,并结合Lie群理论和三阶方程线性化等方法对两类三阶非线性微分方程进行可积性分析及求解。首先,将文献中的首次积分方法进行推广,首次将该方法推广使其用于三阶微分方程。其次,对于一类三阶非线性微分方程,运用推广的首次积分方法求出该方程两个独立的首次积分,并对方程进行降阶;运用函数变换法得到了该方程的两个精确解;借助Lie群理论得到该方程接受的Lie群的