【摘 要】
:
流化床由于构造简单,操作简便,在能源化工等领域的燃烧、物质分离与混合、制粒等过程中被广泛应用。流化床的混合、传热、传质效率高,其内部气固两相间的剧烈反应对床内能量与动量的传递过程存在影响,直接决定了流化反应速度和效率。实际工业过程中,流化床内的物料多为在粒径和密度上存在差异的复杂多元颗粒。然而目前对流化床的数值模拟研究多为对单一组分或双组份颗粒的探索,对于超过两种组分的多元颗粒的研究工作还不够完善
【基金项目】
:
国家自然科学基金委; 中央高校基本科研业务费;
论文部分内容阅读
流化床由于构造简单,操作简便,在能源化工等领域的燃烧、物质分离与混合、制粒等过程中被广泛应用。流化床的混合、传热、传质效率高,其内部气固两相间的剧烈反应对床内能量与动量的传递过程存在影响,直接决定了流化反应速度和效率。实际工业过程中,流化床内的物料多为在粒径和密度上存在差异的复杂多元颗粒。然而目前对流化床的数值模拟研究多为对单一组分或双组份颗粒的探索,对于超过两种组分的多元颗粒的研究工作还不够完善。因此探究流化床内多元颗粒的气固流化特性对相关理论的发展至关重要,能为流化床的设计制造和工业操控提供借鉴。本文采用离散单元法(Discrete element method,DEM)对流化床内粒径存在差异的D类多元颗粒的气固两相流动过程进行了模拟。同时也模拟了单一粒径D类颗粒在流化床内的气固流动过程并对比分析。本文首先对模型的可行性进行了理论分析验证和实验验证,然后通过仿真模拟得到了流化床内不同时刻的颗粒运动信息,经过数据后处理得出不同入口气速下的床层解锁过程、颗粒和气体在床层中的速度分布、多元颗粒的速度差异、多元颗粒的质量分数分布、床内颗粒的混合过程图和混合指数、以及床内平均空隙率分布等特性。结果表明多元粒径颗粒与单一粒径颗粒的流化特性存在明显差异,入口气速的大小对流化床内颗粒的流动存在影响。当初始填床高度和入口气速相同时,多元粒径颗粒流化的床层膨胀比大于单一粒径颗粒流化的床层膨胀比;提高入口气速能使床层膨胀比以及床内颗粒和气体的速度增大、床层解锁时间变长。当流化气速较大时,多元颗粒流化过程中会出现不同粒径颗粒在床内不同区域聚集的现象,流化气速较小时这样的趋势并不明显。对于颗粒速度分布,在同一位置不同粒径颗粒的速度存在明显差异,然而当考察同一区域全部颗粒的平均速度分布情况时,多元颗粒与单一粒径颗粒的速度分布没有明显的区别。对床内颗粒的混合程度进行统计学分析,多元颗粒的混合程度优于单一组分颗粒的混合程度。仿真结果表明采用数值模拟方法进行研究能弥补理论分析法和实验研究法的不足,适合于流化床内微观多元颗粒运动机理研究。
其他文献
PM2.5是我国目前大部分城市的首要污染物,尤其在我国北方地区,秋冬季发生的雾霾事件严重影响了民众的生活及健康。PM2.5来源复杂,既包括一次污染物又包括二次转化后的污染物,因此其来源解析技术也需全面考虑。而不同模型在开展PM2.5来源解析上均具有优缺点,如何获得准确的PM2.5来源解析结果是目前亟需解决的科学问题。本研究以典型污染城市-长治市为例,分别使用CMB及CMAQ模型开展PM2.5来源解
电磁感应透明(electromagnetically induced transparency,简称为EIT)现象自上世纪被发现以来成为了人们主动调控介质光学性质的重要手段之一,其可以显著增强光与相干介质的线性及非线性相互作用,使得弱光非线性效应得以实现。近年来,EIT在光波群速度减慢、光存储、光开光、光孤子等领域均具有重要的应用。其中,基于EIT机制的光存储因其优异的存储性能和广阔的应用前景近来
在以深空探测为代表的极端服役环境下,为保障电子器件等有效载荷的正常运行,需要一些承载零部件具有相应的防辐射性能。本文以重金属钽、轻金属镁、铝为研究对象,采用室温轧制的方式,研究Mg-Al-Ta复合金属板材的成形、组织及力学性能,为开发新型防辐射金属结构材料奠定基础。以AZ31B、纯钽、铝箔为实验对象,详细研究轧辊速率(80-150r/min)、轧制道次(1-3)、轧制压下量(20-90%)等叠层冷
几十年来,铝合金因其优良的特性被广泛应用。但是近几年铝导线腐蚀带来的危害使得人们开始注意铝导线的耐蚀性。本文以硬铝线和电缆用软铝合金导体为研究对象,添加Ni、Mo、Nb等元素来改善铝及铝合金导体的耐蚀性。以导电率、抗拉强度、屈服强度及硫酸铜滴定穿透时间等指标对微合金化铝及铝合金导体进行综合评价,并借助OM、SEM、EDS观察分析第二相,对其腐蚀机理进行了分析,结论如下:(1)适量Ni、Mo、Nb可
为了有效地改善环氧复合材料的性能问题,已将多种具有高热导率和良好电绝缘性的无机颗粒应用于热固性或热塑性聚合物以提高复合材料的导热绝缘性能。近年来,许多科研人员热衷于研究构建填料的有序网络。目前对于碳化硅颗粒磁化处理对环氧复合材料击穿、介电和导热性能的影响探究极少,因此该研究具有重要意义。由于碳化硅有若干晶型,而不同晶型的理化性质存在一定差异。本文选用最常见的α-SiC、β-SiC进行不同比例不同填
随着传统的硅基半导体电子器件濒临尺寸极限,在纳米尺度以单个分子为基本组成单元设计并制备体积更小、响应速度更快、能耗更低的单分子电子器件是解决电子器件继续小型化困难的方案之一。近几十年以来,众多科研人员通过发展实验技术手段和完善理论研究方法,研发出分子整流器、分子开关、分子场效应管、分子导线、分子自旋过滤器、分子传感器等一系列功能性分子器件。具有单向导通功能的分子整流器(又称为分子二极管)因其在分子
由于高比强度、易成形、高阻尼、低成本等特点,镁合金在航空航天、汽车、飞机等领域有重要的应用。然而,较低的强度与较差的塑性是制约镁合金广泛应用的主要瓶颈。本文采用快速凝固喷带和放电等离子低温烧结工艺,详细研究含Gd和Zn的镁基过饱和固溶体块体合金的多相析出及其力学性能,研究成果对高性能块体镁合金的开发具有一定的理论指导。以Mg96.9 Gd2.7Zn0.4合金为研究对象,从母合金熔炼、快速凝固薄带的
光与物质之间的相互作用是人类认识自然,研究、调控和利用物质世界的重要手段。从普朗克提出黑体辐射理论到激光物理的诞生,再到量子传感器,核磁共振,量子信息等技术的兴起,光与物质之间的相互作用都起着非常重要的作用。近年来,人们在有机分子体系、超导量子电路、半导体极化基元、光机械系统等物理体系中实现了光与物质之间的超强耦合,这为量子纠缠、非线性光学、量子化学等相关研究提供了实验基础。本学位论文中,我们研究
强磁场下的量子色动力学(QCD)相变的研究可以深化我们对宇宙早期演化、致密天体构成和非对心重离子碰撞的认识。物理学家Roberge和Weiss(RW)发现虚化学势μ=iθ/β的SU(N)规范理论的配分函数是θ的周期函数,高温下θ=(2k+1)π/N处存在一级相变。RW相变的研究有助于更好地理解在有限密度下的QCD退禁闭相变。众所周知强磁场会导致夸克凝聚的低温磁催化效应(夸克凝聚随磁场增强)与高温反