利用全基因组关联分析的方法挖掘大豆倒伏及相关性状的关键基因

来源 :华中农业大学 | 被引量 : 0次 | 上传用户:dalianwaiguoyu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大豆是重要的蛋白和油料作物,也是重要的生物固氮作物。倒伏(Lodging)不仅影响农作物产量和品质,还影响机械化收割,因此,研究倒伏的遗传机制并以此为基础改良作物的抗倒性极其重要。影响植物倒伏性状的因素可分为4个方面,第一是株型性状,包括株高、分枝数、茎粗等;其二是解剖学性状,包括木质部、韧皮部的面积及面积比等;其三是物质组成,包括木质素、纤维素的总含量、单体含量及比例等;其四是外界环境,即植物所处的土壤类型、水分含量、种植方式、风雨雷电等。由于影响倒伏的因素较多,表型值受环境影响较大,所以截止目前很少有倒伏相关基因克隆的报道,少有的一些利用双亲连锁群体或者全基因组关联分析(Genome-Wide Association Study,GWAS)群体定位的抗倒伏数量性状基因座(Quantitative Trait Locus,QTL)也未见后续基因克隆的报道。本实验室从世界范围内收集到的1000多份大豆资源中挑选了500份核心材料作为关联分析群体,本研究在武汉田间种植该群体并考察了倒伏及倒伏相关的表型,对表型进行了相关性分析和初步的GWAS分析,主要取得了如下结果:(1)在2016年成熟期、2017年开花期利用直观评价法考察了大豆倒伏性状,分析发现开花期时大豆倒伏情况并不严重;在2017年开花期、2018年开花期测定了大豆茎秆弯折力,发现两年数据相关性较低;在2017年成熟期、2018年成熟期测定大豆茎粗,发现大豆成熟期茎粗表型值两年重复性较好;在2017年开花期进行大豆田间茎秆材料的取样、染色、拍照及解剖学表型的测定。(2)采用R语言中的Performance Analytics包进行倒伏及倒伏相关表型的相关性分析,发现髓面积(Pith Area,PA)、茎皮面积比(Bark Area Percentage,BA/SA)、木质部面积比(Xylem Area Percentage,XA/SA)、髓面积比(Pith Area Percentage,PA/SA)、开花后茎秆增加面积(Increased Stem Area from Bloom Stage to Mature Stage,ISA)5个性状与倒伏显著相关,因此确定这5个性状作为倒伏相关的关键性状。(3)结合实验室的基因组数据,对髓面积、茎皮面积比、木质部面积比、髓面积比、开花后茎秆增加面积这5个性状进行了GWAS分析,定位了42个SNP,其中有5个单核苷酸多态性(Single Nucleotide Polymorphism,SNP)与已报道的用双亲定位法定位到的倒伏相关的QTL重合,其余37个SNP是新定位的位点。以上结果为进一步精细定位和筛选候选基因,和最终克隆影响倒伏的关键基因并研究其分子机制奠定了基础。
其他文献
光电探测器作为将光信号转化为电信号的载体,在军事领域和民用领域均有广泛的应用。当前,面对复杂环境条件下苛刻的探测需求,传统单一波段的光电探测器已无法胜任。而跨波段、宽光谱的光电探测器的研发受到了广泛关注。如何能在复杂环境中高效获取准确的图像信息变得尤为重要,由此双波段或多波段融合的光电探测系统应运而生。但是目前研发的双波段或多波段探测系统通常是采用两套甚至多套独立的探测系统组装而成,此类系统的制作
学位
微生物参与的硒氧化是硒元素生物地球化学循环的重要环节,也是植物吸收利用硒元素的关键。但相关研究较少,特别是硒氧化的机制尚不清楚。本研究以前期获得的一株新的硒氧化细菌Rhizobium sp.T3F4为研究对象,旨在探究其氧化硒的分子机制。该菌株能氧化化学单质硒Se(0)和生物纳米硒(Se NPs)生成Se(IV)。在添加0.1 g/L Se(0)的1/5 LB液体培养5 d后的Se(IV)浓度可达
学位
期刊
近年来,随着摄像头的数据互联网化,监控系统的应用越来越广泛。同时监控系统随着计算机视觉和人工智能技术的不断发展下,也逐渐变得智能化,收集的数据能够自动处理,以人工检查和监督的形式在逐步减少。然而在这些场景中,监控的目标和拍摄设备都存在一定的距离,监控识别到的目标往往不会主动配合,这使得部分可疑人员可以很容易地避开这些监控。由于人脸识别技术在有面部遮挡或者拍摄角度不佳等情况下,只能捕捉人脸的特性,所
学位
癌症是世界范围内的医疗难题,也是人类生命健康的最大威胁之一,肺癌更是发生率和致死率均为最高的恶性肿瘤。肺癌的发生发展机制复杂,生长迅速,容易复发和转移,再加上患者个体差异大,使得肺癌的治疗手段缺乏,治疗水平发展缓慢,因此针对肺癌发展的具体机制研究以及快速有效的诊断和治疗手段的创新非常急迫和需要。外泌体是新近发现的细胞间沟通交流的媒介,几乎所有细胞都能够分泌和吸收外泌体,外泌体携带的生物活性分子因此
学位
随着应用环境的复杂化,对目标提出了更高的探测要求。单孔径成像光学系统在单波段下只能对特定环境进行应用,对于烟雾、雨天、昼夜探测显现出了劣势与不足,高分辨与大视场共存也是单孔径成像系统一直以来不可调和的一对矛盾。复眼由于子眼的光焦度大制约了探测距离,但众多子眼的拼接可获得大范围观测,而且具有重叠视场的相邻小眼后期进行图像重构可增强图像分辨率。为解决单波段单孔径成像带来的问题,引入多波段加复合孔径成像
学位
创伤性脑损伤(traumatic brain injury,TBI)是因头部遭受撞击,打击,颠簸或头骨贯穿造成的脑功能障碍疾病。据统计,目前世界范围内有超过57,000,000脑损伤患者,TBI的发病率是790人/10万人/年。造成创伤性脑损伤的主要原因有车祸撞击,运动撞击,枪伤,斗殴及高空坠物。脑损伤常常会给患者留下严重程度不一的后遗症,但这些后遗症基本上会对患者的学习,工作,社交造成一定影响,
学位
本课题来源于中国兵器工业试验测试研究院所规划靶标技术体系中的一个子课题“具有实时毁伤感知的人形靶标系统构建技术”。当前,小规模的军事冲突可能性远大于大规模的军事对抗。面对挑战,我军必须不断发展自己,而部队靶场训练测试,便是提高军事实力的重要一环。通过对国内外多种射击训练用靶进行分析,目前陆军靶场的训练方式主要是打击模拟真实的战场环境下的各种类型靶标。如自动报靶靶标与机器人移动靶标,在实际使用中存在
学位
镁合金因密度低、比强度高等优势,在轻量化结构材料领域中拥有广阔的应用前景。但其自身的密排六方结构存在对称性低、可同时开动的滑移系少等特性,导致其塑性较差、各向异性,使得镁合金应用范围受到局限。在装备需要日益严苛的背景下,研制出同时具备高强度和高塑性的材料是非常有实际意义的。加入合金化元素是提高镁合金综合性能的有效途径之一,而Mg-Bi合金因Bi元素的固溶强化作用,能在一定程度上解决其强度较低的问题
学位
储能介电陶瓷的优势在于功率密度高,充放电速度极快,另外,储能介电陶瓷的使用寿命长,同时在宽温域及宽频域内电学性能也表现良好,目前已经成为电介质电容器的核心部件。但是电介质陶瓷的储能密度较低,限制了其更广泛的发展,因此,研究发展储能性能更优的储能陶瓷体系成为应有之义。铌酸钾钠(K0.5Na0.5NbO3)基陶瓷具有居里温度高,机电耦合系数高,击穿场强相对于其他电介质陶瓷较高等特点。因其独有的透光性而
学位