面向计算机联锁智能运维的深度学习故障诊断方法研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:a12c3d4e5f6
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
计算机联锁是具有代表性的铁路信号安全苛求系统,负责列车的进路控制和车站作业安全防护。当前计算机联锁系统运行维护的智能化水平较低,主要还是依靠人工经验,无法应对大规模的故障诊断需求,且容易出现由于经验不足造成的诊断不完备、诊断出错等问题。人工智能技术的发展,以及系统运行过程中产生的海量数据给联锁系统的智能运维带来了机遇。本文从联锁系统自身特点出发,面向智能运维,研究基于深度学习的故障诊断方法,并设计实现了一套计算机联锁智能运维支持系统,可有效提高故障诊断的自动化水平。本文主要工作如下:(1)提出了一种针对站场拓扑的树形数据组织方法。考虑到联锁逻辑对站场拓扑的依赖性,给出一种树形结构用于描述站场设备间的关联关系,解决深度学习模型中,联锁数据维度过大的问题。(2)提出了一种基于树形结构的深度学习联锁逻辑故障诊断模型。以某大规模实际站场为对象,采用了五种不同的神经网络对其进行建模,并进行对比评估实验,结果表明,所提出的树形结构诊断模型提高了30%左右的故障诊断准确率。(3)提出了一种面向联锁逻辑时序特性的深度学习模型。将树形神经网络分别与循环神经网络及其衍生算法相结合,形成了针对联锁逻辑特点的故障诊断模型。同时,将结合时序逻辑的故障诊断模型与仅采用树形结构的模型进行评估对比,实验结果表明结合时序信息的模型在二分类任务中准确率为90.26%,在多分类任务中为88.00%,证明了其有效性。(4)基于所提出的方法,设计实现了一种基于深度学习的计算机联锁智能运维支持系统。该系统以故障诊断模型为核心,为管理人员提供了可视化界面,并实现了运维相关功能,包括站场状态显示、联锁故障诊断和设备状态查询评估等。本文工作围绕联锁系统的自身特点,融合深度学习人工智能技术,为联锁逻辑的故障诊断提供了一种新的思路和解决方案,对计算机联锁智能运维具有借鉴意义。
其他文献
舵面负载模拟系统是一种地面条件下飞行器伺服控制机构的半实物仿真试验设备,主要用于复现飞行器舵面所受的各种空气动力载荷,以实现对伺服控制机构的检测和验证,从而确保飞行器的飞行控制精度。因此,舵面负载模拟系统对空气动力载荷谱的复现精度,将直接影响飞行器伺服控制机构检测结果的可信度和可靠性,并最终会关系到飞行器的飞控性能。然而,舵面负载模拟系统属于典型的被动式加载系统,将会受到多余力矩以及其它因素的干扰
无人驾驶列车系统是随着时代发展应运而生的产物,安全性、高效性和舒适性是其发展的核心要素和重要的设计指标。列车从人工驾驶到无人驾驶的转变对控制系统提出了更高的设计要求。同时,现代通信硬件设施和技术手段的发展,以及移动闭塞技术的广泛应用,保证了列车之间的信息交互,也促进了多列车协同控制的发展。随着人们对于出行的需求提升,乘客的乘车舒适性被列入列车控制系统的设计指标中,这是在列车保证安全高效运行的基础上
随着计算机立体视觉技术研究的深入,三维扫描技术得以不断发展,与其相关的点云数据处理技术也逐渐成为研究热点。点云边缘是用来描述目标物体轮廓边界的测量点集合,是理解和表达三维物体几何特征的基础,而对点云边缘的高精度提取也是实现点云目标物体参数高精度测量的前提条件。从点云边缘的完整提取和精确定位出发,本文提出一种基于法向量夹角均值与加权法线迭代的点云边缘提取算法,同时使用基于非边缘结构信息的点云优化方法
振动在生活中十分常见,如大型旋转机械的振动、车辆行驶引发的振动、铁路、桥梁和建筑物的自振等,这类振动的频率较低,一般在10 Hz以下。磁电式振动传感器是一种具有较低使用频段的测振传感器,而现有的磁电式振动传感器自然频率较高,其低频测量下限难以满足低频测量的要求,因此,需对其低频特性进行补偿。同时,对磁电式振动传感器工作性能的评估需要分析其自身的噪声水平,自噪声水平也是实时判定测振传感器是否劣化以及
21世纪开始,工业生产中工业机器人占比不断增加,对其性能的要求也不断提高。工业机器人的普通末端执行器由于其专门性,只能完成单一简单的抓取动作,已经很难满足日益复杂的操作要求。多指灵巧手作为新型的末端执行器,因其在抓取上具有良好的通用性和适应性,可以完成复杂和多样的操作任务,有重要的研究意义和应用前景。目前绝大多数的多指灵巧手为串联结构,采用的驱动方式为欠驱动,使灵巧手存在稳定性差和精度低等缺点,同
离线手写签名认证是利用个人手写的签名图像对其进行身份认证的技术,具有成本低、易于接受等优点,在安全、金融、司法、刑侦等领域中都有十分重要的应用。近年来,随着深度学习等方法的兴起,离线手写签名认证系统的性能不断提高。然而,在实际应用中,由于精心伪造的签名与真实签名区分度较小,并且同一个人在不同时刻的签名差异较大等难点,高精度离线手写签名认证仍然是一个具有挑战性的研究课题。针对离线手写签名认证技术,本
随着互联网与计算机技术的快速发展及广泛使用,网络上数据日渐庞大,维护网络空间安全已成为网络与计算机安全发展极为重要的一部分。近年来网络安全事件频频发生,恶意代码对计算机造成的安全威胁不可小觑,严重危害国家、社会和个人的隐私安全和经济利益,同时,对恶意代码的特征提取、检测、分类以及对未知新型恶意代码的检测的能力在网络空间安全领域起到了至关重要的作用。恶意软件制作者为了躲避检测查杀,往往对恶意软件通过
自主导航技术是地面无人车的核心技术,是人工智能领域研究的热点问题。地面无人车的自主导航一般分为感知、定位、路径规划与控制这四个部分。路径规划问题作为地面无人车研究中不可或缺的一部分,具有非常重要的研究和应用价值,虽然目前有许多学者提出各种各样的算法来分析、解决这个问题,但是行之有效的方法并不多,这就是本文继续研究路径规划问题的必要性。本文内容和研究成果如下:(1)实现了基于改进A*算法的全局路径规
在这个信息技术飞速发展的时代,网络逐渐成为人们生产生活不可或缺的一部分,与此同时许多网络空间安全问题也日益凸显。网络流量异常检测是网络安全领域研究的重要方向,本文以胶囊网络(Capsule Network,CapsNet)为基础,研究网络流量异常检测算法,提出基于SMOTE-Tomek混合采样和胶囊网络的网络流量异常检测模型。本文的主要研究工作如下:首先,研究分析CapsNet的工作原理,算法架构
随着铁路技术的迅速发展和高铁运行里程的不断增加,我国在途列车数量也逐渐增多,针对列车安全状态监管及故障诊断的研究显得越来越重要。牵引变流器系统是列车承担动能转换的重要装置,系统结构复杂且故障高发。变流器故障的发生会导致列车牵引传动系统异常从而影响整车正常运行,目前针对牵引变流器故障诊断的研究不多,所以对列车牵引变流器进行故障诊断是一个重点研究方向。然而列车牵引变流器故障场景复杂,传统诊断方法多依赖