论文部分内容阅读
高功率脉冲磁控溅射相较于直流、脉冲磁控溅射,具有较高的峰值电流和峰值功率,可以制备出良好致密度和膜基结合力的固态薄膜,但无法解决绝缘材料加不上偏压的问题。针对上述问题,本文提出了正反双极性高功率脉冲磁控溅射的新方法,仿真了主电路拓扑结构,成功研制了新型磁控溅射电源,采用正反双极性高功率磁控溅射系统在PI表面沉积制备了金属膜,并对沉积过程的等离子体放电行为、沉积层表面形貌、结构及机械性能加以研究,揭示了沉积过程机制与性能演化规律。本文采用PLECS仿真软件对主电路拓扑结构进行构建,重点构建了电路的斩波控制模块。基于不同斩波模块输出的靶电压、靶电流波形以及波形实际应用工况加以分析。除此之外,本文基于仿真电路拓扑结构制作了新型磁控溅射电源。在研制新型电源的过程中对电路拓扑结构进行选取和计算。其中,滤波电容为190μF,逆变桥为全桥式逆变电路,整流桥包括副端变压器,整流桥,滤波电容,斩波控制模块和负载。变压器原端和两副端匝数比为1:2和1:1。根据所构建的电路,研究不同放电波形对等离子体放电行为的影响。结果表明,正向电压可以提高金属放电阶段的稳定性。随正向电压提高,波形金属放电宽度和平稳度均明显增加。采用不同放电波形在PI表面沉积金属Cr膜。其中,HIPIMS放电波形制备的Cr膜表面形貌呈条纹状。BP-HIPIMS放电波形制备的Cr膜表面形貌呈灰黑均匀分布点状形貌。而DP-HIPIMS和DBP-HIPIMS放电波形制备的Cr膜表面形貌分别呈灰黑相间网络状形貌以及深色衬度岛及其周围白色界面所组成的形貌。加入正向电压是可以有效提升薄膜的表面粗糙度,BP-HIPIMS和DBP-HIPIMS放电波形对应Rmax分别为15.9nm和30.6nm,对应的Ra分别为2.9nm和3.5nm。PI-Cr薄膜的物相结构为α-Cr晶体,Cr(110)密排面对应的晶向方向为Cr膜的择优生长方向。采用划痕刮擦法评价薄膜的结合力,BP-HIPIMS和DBP-HIPIMS放电波形对应的薄膜加载力为23.5N和22N,加载力相较于HIPIMS和DP-HIPIMS放电波形制备的薄膜有明显提升。采用有机涂料划格法对薄膜结合力进行等级评价,ASTM等级为5B级。采用销盘式摩擦磨损试验机对薄膜的摩擦学性能测试。结果表明,BP-HIPIMS和DBP-HIPIMS放电波形对应的初始摩擦系数均高于0.25。HIPIMS和DP-HIPIMS放电波形对应的初始摩擦系数均低于0.2。但BP-HIPIMS和DBP-HIPIMS放电波形对应的薄膜磨痕宽度分别为221.8μm和217.8μm,磨痕宽度较HIPIMS和DP-HIPIMS放电波形对应的磨痕宽度要小。