接触带电和静电感应诱导的液滴充电及其应用的研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:tiantianweb9737l
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近十年来,带电液滴引起了人们越来越多的关注。基于这些带电液滴界面独特物理化学反应,它有着许多新兴的应用并在其中发挥着至关重要的作用。包括发电,静电喷涂,加速精细化学反应,纳米尺度材料制造,微流控系统等。除了这些对科技发展十分有益的应用,这类接触带电现象还可能产生一些不良后果,如降低制药过程的成功率、降低工业生产的效率,并且产生昂贵的处理费用。此外,若材料表面积聚过量电荷,会发生气体击穿,产生火花,这会引起易燃物爆炸,还会对电子元件产生损害等。因此,灵活地控制与测量接触中产生的电荷量就显得尤为重要。以往产生带电液滴的方法有多种,如高压电喷雾、通过微管滴出液滴等。但这类方法通常需要外部能量输入或昂贵的仪器,且无法灵活控制液滴带电量及带电种类。与传统方法不同,本文提出了一种基于固/液界面效应,即接触带电(Contact Electrification)效应,低成本、更灵活地产生带电液滴并调控其带电量与带电种类的方法。并对液滴在自组装、运输、发电等领域的应用进行了研究。主要研究成果及内容如下:(1)通过液滴与超双疏基板进行撞击、相对运动等行为,使固液分离后的液滴带上正电荷,基板带上负电荷。使用预充电超双疏基板作为驻极体,通过静电感应产生带负电荷的液滴。并通过改变实验条件,例如液滴韦伯数、滑动距离、液相与驻极体感应间距和驻极体表面电荷密度等条件来实现对液滴带电量及带电种类进行灵活地调控。同时,本文还通过改变液体种类、溶液浓度、撞击次数、基板温度、液滴体积等多种条件,去探讨研究液滴带电机理与多样性的调控方式。(2)为了进一步探究带电液滴在实际科技和工业中的应用,本文针对于液滴的定向运输提供了一个高效低成本的策略。目前,对液滴进行操纵主要利用水动力应力、电流体力学、磁学、声学以及设置特定几何通道等方法。但这些方法大多需要外部机械能或主动部件,操作复杂,不能灵活控制液滴。本文利用了带有同种和不同电荷的液滴之间的或带电液滴和驻极体之间的排斥和吸引相互作用,使得液滴可以自发运输或在低阻力表面快速地组装成高度有序的阵列。最后,利用接触带电和静电感应原理,制作了简易的带电液滴驱动的微型反应器和水驱动的摩擦纳米发电机,并分析了其工作原理。
其他文献
级联码是一类重要的纠错编码方案,其相较于单码编码方案具有更强的纠错能力并能够获得更好的译码性能。在众多级联编码方案中,BCH-LDPC(Bose-Chaudhuri-Hocquenghem-Low Density Parity Check)级联码是一类译码性能出色的编码方案且被应用到了诸如DVB-S2(Digital Video Broadcast-Satellite Second Generat
在动物体器官发育过程中,细胞增殖和分化需要受到严格的调控。果蝇的视觉中心是研究细胞增殖和分化过程的非常好的模式系统。果蝇的视觉中心来源于胚胎时期内陷的神经上皮细胞,在发育的早期,他们通过对称分裂来扩增群体;到了早三期幼虫神经上皮细胞从中间区域转变为行不对称分裂的神经干细胞,产生视觉中心脑脊神经节的神经细胞。但是什么调控了神经上皮细胞的维持和转化过程,对此我们知之甚少。在本论文中,我们发现两条进化上
从古至今,中国是一个农业大国,农业农村农民问题始终是全党工作的重中之重。随着中国特色社会主义进入新时代,我国农村发展的阶段性目标已从社会主义新农村建设发展为乡村振兴。乡村振兴的制定和提出,为我国农村未来几十年的发展指明了正确的前进方向。在当下的农村社会,越来越多的青年男子进城谋生。农村妇女独当一面,成为推动农村发展的中坚力量。农村妇女在乡村振兴中的积极参与,与未来乡村的发展态势息息相关。乡村振兴的
背景:青光眼(glaucoma)是一组具有遗传异质性、以视网膜神经节细胞进程性凋亡和功能丧失的视神经病变。截止目前,青光眼的患病率可达到3.5%,是世界范围内的第二大致盲性眼病,发病仅次于白内障。原发性开角型青光眼(primary open-angle glaucoma,POAG)是青光眼中最常见的一种亚型,发病较为隐匿,如未在早期及时诊治,可导致视野的全部丧失,严重影响患者的生活质量。因此,我们
孩子是脚,课程是鞋,开展适合幼儿的课程,需要将“儿童本位”的理念落实到课程之中。我园从丰富课程资源入手,在传承中创新,在审议中调整,在观察中支持,边思考边行动,在儿童视角下实施园本课程。传承+打造,丰富课程资源节日文化是我园传承下来的园本课程,无论是传统节日、社会节日还是园本节日,都有其独特的价值。
期刊
随着无线通信发展至如今的第五代移动通信系统(5th Generation Mobile Networks,5G),传统频谱资源正逐步耗尽,为了满足未来迅速增长的无线通信传输速率需求,人们将目光看向了更高的频段。太赫兹(Terahertz,THz)通信凭借其所具有的丰富频谱资源,及其可实现吉比特乃至太比特级数据传输速率,而受学术界与工业界的高度关注。然而随着THz通信系统载频的升高,受限于成本、复杂
腔光力学是物理学的一个分支,主要研究微纳尺度介质上光场与机械运动之间的相互作用。它可用于研究丰富的光物质相互作用过程,可实现量子基态冷却、量子纠缠、电磁诱导透明及慢波传播等物理现象,在量子信息科技领域具有重要科学研究意义。与此同时,腔光力学系统在精密测量领域也具有广阔的应用前景。像加速度、微小位移、弱力、质量等能够影响腔光力学系统机械振动的物理量,可以通过光声耦合作用读取腔光力学系统的机械振动信息
内皮抑素(endostatin)是一种潜在的新生血管形成抑制剂,对多种肿瘤模型均具有较强的抑制效果, 且无耐药性和毒副作用。其独特的结果特点在于它的二级结构含有大量的β折叠,而只有极少量的α螺旋;它还包含有两对巢式二硫键。因此我们选择endostatin作为一种模型蛋白来研究这一类蛋白的折叠机理。我们用核磁共振(NMR)、内源荧光(intrinsic fluorescence)、圆二色相(CD)等
研究目的:通过实时近红外光脑氧饱和度(NIRS-Sc O2)及舌下微循环监测,并联合大循环及心脏超声等多参数,评估短期调控动静脉体外膜肺氧合(VA-ECMO)患者的血流的安全性,以及精细化流量管理的可行性。研究方法:连续收集2019年12月至2021年1月在四川省人民医院SICU及EICU接受VA-ECMO治疗的成年患者进行前瞻性自身对照研究。预计在患者接受VA-ECMO治疗后的第2天(24-48
遗传性血管水肿(Hereditary Angioedema,HAE)是一种罕见但可能危及生命的遗传性疾病,主要表现为血管性水肿,是由体液渗入真皮和皮下组织间隙所引起。其发病的主要原因,是由于C1酯酶抑制剂(C1 Esterase Inhibitor,C1INH)减少导致激肽释放酶活性的丧失,从而引起高分子量激肽原的裂解和缓激肽的释放,导致血管水肿的发生。丝氨酸蛋白酶抑制剂G1(Serine Pro