钙钛矿氟/氧化物电极材料的制备及其储锂特性研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:tianxiang521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当今世界各国的可持续发展因能源和环境问题而受阻,但市场对高性能储能设备的需求却日益增加。锂离子电容器和锂基双离子电池是两类适应时代发展出现的新型锂基储能器件,因兼具高能量密度,高功率密度以及长循环寿命的特点而受到广泛关注。而电极材料很大程度上决定了器件的性能,因此开发具有高性能的电极材料是提升器件性能的关键。本文合成两种钙钛矿型电极材料,将二者作为负极材料探究它们在锂离子电容器和锂基双离子电池中的应用前景。主要研究工作:1.通过溶剂热法制备了低成本的四方相单金属钙钛矿氟化物KCu F3(标记为KCF)。通过XRD,SEM,TEM和BET等测试研究KCF材料的物理化学特性。通过多种非原位测试揭示了KCF材料是赝电容为主的转化储锂机理。在半电池测试KCF表现出色的性能(75.1-52.5 m A h g-1/0.1-3.2 A g-1/191%保留/1000圈/1 A g-1),将KCF作为新型负极材料与商业活性炭(AC),石墨(918)匹配,分别组装成KCF//AC锂离子电容器和KCF//918锂基双离子电池器件,两种器件均呈现出优异的电化学性能(70.0-14.2 Wh kg-1/0.8-22.2 k W kg-1/60%保留/3000圈/4 A g-1;70.5-9.4 Wh kg-1/1.0-9.2 k W kg-1/65%保留/2000圈/4 A g-1),表明KCu F3材料在新型锂基储能器件领域有发展前景,同时具有价格优势的KCu F3材料促进了低成本储能体系的发展。2.通过混合溶剂热法制备Ni/Co/Mn三金属钙钛矿氧化物微米球材料LaNi Co Mn O3(Ni:Co:Mn=1:1:1)(标记为LNCMO(1:1:1))。通过XRD,SEM,TEM和BET等研究LNCMO(1:1:1)材料的物理化学特性。通过XRD测试结果确定了最优实验合成条件。通过非原位的XPS,XRD和CV测试证明LNCMO(1:1:1)材料是赝电容为主的转换-嵌入混合储锂机理。半电池测试结果表明LNCMO(1:1:1)材料有优于相应三种单金属材料的整体电化学性能(266.5-149.3 m Ah g-1/0.1-3.2A g-1/129%保留/2 A g-1/1000圈)。将其作为新型负极材料与商业活性炭(AC),石墨(KS6)匹配,分别构建LNCMO(1:1:1)//AC锂离子电容器和LNCMO(1:1:1)//KS6锂基双离子电池,且两种新型储能器件均表现出色(122.1-32.5 Wh kg-1/0.6-18 k W kg-1/56%保留/1000圈/5 A g-1;194.8-8.7 Wh kg-1/0.7-10.4k W kg-1/64%保持/500圈/2 A g-1)。
其他文献
腈在天然产品,药物和农用化学品中是一种普遍存在的结构单元。在有机合成过程中,氰基是一种很重要的官能团前体,可以转化为其它有用官能团,如:胺、酰胺、醛、脒、酮、羧酸。因此,研究氰基官能团的引入方法具有重要意义,文献已经报道了通过采用不同的氰基来源将氰基引入有机化合物的方法。在已有的报道中,脂肪族腈类化合物主要是通过不饱和烃与HCN或金属氰化物发生氰化反应的方式制备,但是这些反应通常需要使用昂贵的Ni
通过烯烃的双官能团化反应,能够经过一步反应,同时引入两个新的原子或者基团(包括碳原子和杂原子)到烯烃C=C键的两端,一次构筑两个新的化学键,不但可以迅速增加产物分子的多样性,而且能够减少合成步骤,提高合成效率,减少金属试剂的用量;近年来这一领域得到了迅速发展,成为当前有机合成化学研究的热点和前沿。但是从单一烯烃的双官能化反应到两种不同烯烃的双重双官能化反应的反应报道甚少,本论文结合烯烃的双官能团化
聚电解质复合物(PEC,polyelectrolyte complex)是由阳离子聚电解质和阴离子聚电解质通过静电相互作用而结合形成的目前,许多先进的研究工作正在聚电解质复合物领域展开,这些复合物往往结合了两种不同聚电解质的性质而又不失去其特性。此前,人们对α-螺旋聚多肽组成的聚电解质复合物结构-性质的研究尚不多见。故此我们制备了由α-螺旋阳离子聚多肽(PPBLG-DMS-I)和β-羧甲基葡聚糖钠
二月二晴,黑霜煞一层;二月二下,庄农搭一架;二月二阴,麦子起身齐崩崩。——民谚关于这些节气的民谚,老人们是熟稔于心的。一些祖祖辈辈留下的口诀,在心里,念叨久了,像珠子,就打磨得温润光滑了。这一年的二月二,天晴。田野萧杀,村庄瑟缩。黑霜,落了一层。真是黑霜,如薄刃,
期刊
超级电容器作为新型储能器件具有内阻低,电流效率高以及充电速率快等特点。但其较低的能量密度限制了超级电容器的应用范围。众所周知,电极材料的选择关系着超级电容器的性能特征。过渡金属化合物由于理论比电容较高而受到关注,但其固有电导率低和体积膨胀大成为制约其应用的关键。本文从探讨如何合成性能优异的复合材料以及扩宽工作电压两方面出发,优化电极材料制备工艺技术,制备性能更优良的超级电容器。论文的主要研究工作如
多年来发夹型核酸探针因其特异性和灵敏性,在生物传感器的研究方面已取得了许多有效的进展。新型发夹型DNA荧光探针具有低背景信号、高灵敏度、高选择性、低成本、高信噪比、猝灭效率好等优点,是一种发展前景广阔的新型核酸分子探针。发夹型核酸探针是一类广泛应用于化学、生物学和医学的具有识别功能的DNA检测工具。在生物分析中它可以于细胞内成像、小分子检测、基因检测与治疗、生物传感器和生物芯片、实时荧光定量PCR
含硫,氮杂环化合物广泛存在于天然产物和有机药物分子中,并被应用于各个化学领域。伴随着有机合成化学的发展,它们越来越被人们所重视,其中二芳基硫醚和喹啉衍生物更是在这类化合物中扮演着重要的角色。人们发现在许多生物体内都含有它们,与此同时二芳基硫醚和喹啉衍生物还被大量应用于有机半导体材料,功能材料和生物工程等领域。关于二芳基硫醚化合物和喹啉衍生物的合成方法在近些年来一直被有机化学家和医药研发者开发和改进
聚酮(PK)是一种新型绿色工程塑料,在汽车部件、包装薄膜及电子电器等方面的应用得到了广泛的关注。近些年来,针对PK增强改性的研究较多,主要通过添加无机增强填料复合来改善PK的力学性能。无机晶须是一种重要的增强填料,目前在PK上的应用研究较少。本文选取了硫酸钙晶须(CSW)与碱式硫酸镁晶须(MOSw)为增强填料与PK共混制备了PK/晶须复合材料,研究了硫酸钙晶须(CSW)与碱式硫酸镁晶须(MOSw)
近年来,具有局部表面等离子体共振(LSPR)的等离子体光催化剂已经在光催化技术领域得到了广泛的关注。金属纳米粒子(Au、Pt、Ag、Cu等)通过金属局部表面等离子体共振(LSPR),可以有效的将低能太阳光子转换成化学能。但金属纳米粒子由于自身存在载流子复合率过高的问题,导致热电子传输效率过低。本文在简易的光催化体系下,首先探究了不同金属的局部表面等离子体共振(LSPR)效应以及金属铜的不同形貌对局
随着白色污染的加剧和人们环境保护意识的提升,一次性塑料制品的使用受到了限制,其中低密度聚乙烯(LDPE)薄膜占据了重要地位,开发一种可取代LDPE的全生物降解薄膜材料成为了当下的热门话题。本文从聚对苯二甲酸-丁二醇-己二酸共聚物(PBAT)全生物降解薄膜的原料配方、基本物性以及成型工艺进行研究。选用全生物降解材料聚丁二酸丁二醇酯(PBS)增强PBAT,形成PBAT/PBS共混材料,采用扩链剂提高P