论文部分内容阅读
统计学家们对现实生活中的各种数据进行探究,了解到了一类具有尖峰厚尾特性的偏斜数据的存在,且它们大多出现于金融、经济、生物医学和环境科学等领域,具有对称数据所没有的独特的性质特征。而大量异方差数据的存在,则打破了经典回归模型中方差齐性的假设,同时实际应用的许多方面要求探究方差的来源、影响方差的因素等,以期能对控制过程起到更为重要的作用,所以,对方差进行建模就显得十分必要和有用。自20世纪70年代以来,缺失数据的讨论与研究日趋热烈,因为数据的缺失不仅可能对估计量造成影响,还会造成方差的扭曲,使得传统统计方法的应用显得有些不合时宜,因此针对缺失数据的大量处理方法被一一提出。但我们了解到,目前对缺失偏态数据的研究,特别关于缺失偏态数据下联合建模模型的讨论还较少。本文立足于缺失偏态数据,分别就其联合位置与尺度模型与联合位置、尺度与偏度模型进行探究,主要的内容有:第一,研究了缺失偏正态数据下的联合位置与尺度模型,并在响应变量随机缺失下,讨论了回归插补,随机回归插补这两种传统插补方法的应用,同时基于数据自身特点,提出一种适合偏态数据下联合建模模型的插补方法——修正随机回归插补。通过随机模拟和实例研究,与回归插补,随机回归插补做比较,结果表明,提出的修正随机回归插补方法十分显著地调整了模型的偏度参数。第二,针对偏正态分布下联合位置、尺度与偏度模型的EM类型算法进行了研究,并给出了其在完全偏态数据和缺失偏态数据下联合建模模型中较为详细的应用过程,随机模拟的结果表明EM类型算法对于处理缺失偏态数据联合建模模型是有用和有效的。第三,研究了缺失偏T正态数据下的联合位置与尺度模型,并应用EM算法计算得出其在完全数据下的参数极大似然估计,在响应变量随机缺失下,讨论了回归插补,随机回归插补两种传统插补方法所得参数的估计结果,由随机模拟可以看出和回归插补比较,随机回归插补方法对联合建模模型中尺度参数的调整起到了良好的效果。