论文部分内容阅读
非线性泛函分析是数学学科的一个重要分支,来源于物理学、生物学、经济学等学科理论研究和实践应用的非线性算子不动点理论,已成为分析学中最为活跃的研究领域之一,具有重要的理论意义和应用价值.本学位论文以半序方法和拓扑度理论为工具,重点研究了几类非线性算子的不动点及方程解的存在性与唯一性问题.全文共分为三章:
第一章介绍了本文相关工作的历史背景和发展现状,并介绍了与本文研究工作相关的一些预备知识.
第二章利用不动点指数理论研究了半闭1集压缩算子方程解的存在性与唯.一性问题,并将研究结果应用于一类二阶两点边值问题中.需要指出的是,本章所得到的关于算子方程Ax=μx解的存在性定理,使得许多著名的不动点定理被推广到半闭1-集压缩算子的情形.
第三章首先研究了一类具有对称压缩性二元算子的不动点存在唯一性问题,并在此基础上研究了一类二元算子方程组解的存在唯一性问题.其次,利用锥理论及Banach压缩映像原理研究了序Banach空间中一类非混合单调抽象二元算子方程组解的存在唯一性问题,得到了一些新的结果.