基于低秩约束的多投影跨域识别算法研究

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:ihwfihwf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在计算机视觉中,迁移学习称为领域自适应。通常,数据选自于两个有所差异的数据域,分别是源域、目标域。这两个数据域的差异在于其中数据的特征分布或者所在的特征空间不同。领域自适应的目的是从有足够标注数据的源域中学习知识来帮助没有(或只有少部分)标注数据的目标域进行模型的学习。领域自适应可以有效解决特征分布不同时的跨域识别问题,大多领域自适应方法将两个域的特征投影到子空间,在子空间进行分类器的学习,以取得良好的跨域识别效果。但这些方法大都有以下缺陷:(1)分类器的超平面只由边界附近的实例决定,当存在极端样本时,分类器边界将会受到影响,并且不足以对大部分样本进行有效类别划分,从而导致学习到的分类器效率低下;(2)忽视了两个领域中相同标签数据的局部对齐,不同领域同类数据间的相似性挖掘不够完全,同类数据信息利用不够充分。学习到的模型不能很好地挖掘出域不变特征,最终习得的模型对于同类数据的判定效果不佳。为了解决这些问题,本文提出了一种新的基于低秩交叉重构的领域自适应方法(Low-rank constraint-based cross reconstruction for domain adaptation,LRCR)。其中,通过交叉重构来让原始源域和目标域的数据在不损失信息的情况下获得很好地交织;通过低秩表征提取数据中的主要信息。然后对LRCR方法进行改进,提出可以用于多源域迁移学习的基于低秩约束的跨域多投影学习方法(Low-rank constraint-based multiple projections learning for cross-domain classification,LRMPL)。本文贡献:第一,为了有效的挖掘出数据域之间的相似性,本文通过对原始源域和目标域的交叉重构来构建两个新的数据域,并且通过这两个新数据域来挖掘出原始源域和目标域的整体联系。第二,为了更好的使同类数据进行局部的对齐,对重构矩阵进行低秩约束,以此来将两个域的同类数据对齐,从而使得只要是同类数据,在新的数据域中,它们的距离会被减小。第三,本文使用改进的类PCA正则化项,使得最终学习到的特征表示能够保留原始数据的主要信息。这样学习到的分类器可以有效的进行跨域识别任务。在几个公开数据集上的实验结果表明LRCR和LRMPL方法有着较高的跨域识别准确率,效果优于相比较的几种基线方法。
其他文献
随着近些年自动驾驶技术、激光扫描技术和机器人技术等的蓬勃发展,我们需要更多的信息来获得更好的环境感觉,而不仅仅是依靠图像、视频,这时三维数据就是一个很好的补充。三维点云因为其表达形式比较简单并且可以从激光雷达设备直接获得等优势而广泛应用在计算机视觉的三维数据表示。伴随着深度学习在三维视觉中的发展,生成或重建高分辨率、高保真的点云的能力变得至关重要。尽管深度学习模型最近在点云分类、点云目标检测和点云
在海量且多样化的数据充斥人们生活、工作、学习等方方面面的今天,如何在繁杂庞大的数据中高效、有效的检索到目标数据成为了检索研究方向一个亟待解决的重要问题。哈希检索因其检索上准确、快速的优点引起了大量关注。研究证明,在实际检索应用中有监督哈希方法要比无监督哈希方法的效果更好。时至今日,尽管有监督跨模态哈希技术已经有了不小的进展,但是仍然存在着一些问题需要解决。例如,大部分有监督哈希方法为了获取模态相似
芘类化合物是一类较为经典的蓝光材料(blue materials),在光电领域上的应用前景是非常广泛,芘类衍生物通过分子裁剪、结构调控等方法可选择性制备颜色精准可控的RGB三基色,最终实现全彩显色,蓝光在全彩显示中的地位举足轻重,而蓝光材料相对比红绿光材料来说其本身具有较高的能量、较低的效率发光和短的寿命导致蓝光材料的发展遇到瓶颈,因此为提升蓝光材料芘基有机半导体材料的性能,提高材料的寿命,以及制
脑血肿与脑肿瘤会对颅内正常组织会造成挤压效应,严重损害中枢神经,进而危及病人生命安全。治疗脑部病灶的手段一般为神经外科手术,医生需要在术前阶段对病灶医学影像进行诊断分析,常用医学影像分割技术辅助处理。然而,分割算法仍存在许多挑战与困难。在脑血肿分割中,病灶与正常组织之间边界模糊、灰度信息上表现相似,造成分割结果包含了正常组织,容易发生误诊现象;在脑肿瘤分割中,肿瘤包含浸润水肿部分、肿瘤核与坏疽部分
阿尔茨海默病(Alzheimer’s disease,AD)是一种最常见的脑组织神经疾病,其患者病症具体表现为记忆和思维能力的退化以及个人行为能力和社交能力的退化,且患有AD的人通常会伴随其它生理疾病。因此,AD的早期识别诊断对于减缓病情发展具有重要意义。针对阿尔茨海默症不同阶段人群难以识别的问题。本文首先使用卷积神经网络(Convolutional Neural Networks,CNN)方法对
在互联网信息技术迅猛发展的大背景下,在线学习资源开始大量涌现,导致诞生了更加丰富多元化的网络学习方式和教育手段,但是丰富的在线学习资源易造成“信息超载”这一现象的产生,导致学生在通过网络在线学习资源进行知识内容的学习时,容易产生“知识迷航”的问题。正因如此,关于个性化学习推荐领域的研究正成为热点。首先,本文提出一种二级结构知识地图。在学习者进行学习课程时,这种结构能够指引学习者更为充分了解课程的知
随着铝型材在国内建筑、汽车、制造等行业的广泛应用,中国已经成为全球最大的铝型材产地和消费市场。而挤压加工是铝型材生产中核心环节,其工艺参数直接决定铝型材的生产成本、效率和能耗,这与《中国制造2025》政策要求、企业发展需求密切相关,所以优化挤压工艺参数使得多个目标值达到最优成为铝型材研究领域的热点。传统的方法依靠经验或物理公式建立工艺参数与优化目标之间的映射关系十分困难,而且难以根据近期生产情况迅
目标检测在近年来一直都是众多学者研究的热点问题。其目的是对自然图像中的实例对象进行分类并找出实例对应位置的包围框,在医学图像检测、人脸识别、视频监控等领域都有着非常广泛的应用。传统的目标检测技术都是建立在大量带有精确注释的图像数据集基础上,然而收集并标注该类数据耗时耗力,相较之下,基于弱监督学习的目标检测仅利用图像级别注释信息的数据即可完成目标检测模型构建。图像级注释仅需标注图像中的类别信息,不需
协同致死关系是基因之间的一种特殊的相互作用,当构成协同致死关系的两个基因同时产生缺陷时,会导致细胞的死亡。利用协同致死关系开发靶向抗癌药物是现代癌症治疗理论中重要的一环,在传统的生物学实验中需要通过RNA筛选等手段探测未知的协同致死基因对,而这些实验存在成本高昂以及效率低下等问题。通过计算方法预测协同致死基因对可以为生物学实验提供目标指导,从而提高探测实验的研究效率,在一定程度上降低实验成本。随着
在晚间,多数无课程与活动安排的教室会被学生自习使用。一般情况下,用于晚自习的教室在所有教室中所占的比重较高,但平均每间晚自习教室的座位占用率较低,容易造成电能的浪费。因此,有必要对晚自习教室进行调度,提高整体的座位资源利用率。在晚自习时,学生越发关注空间上的舒适感能否被满足,即有没有足够的自习空间。当前,缺乏考虑学生晚自习所需空间的教室节能调度研究。本文通过采集与分析晚自习相关的数据,对学生微观选