平板型微通道内氢气/空气预混燃烧的数值模拟研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:youaidu2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,微机电系统(MEMS)大多使用化学电池作为动力,但是化学电池具有能量密度低的缺点。因此,将燃料中蕴含的高能量密度的化学能通过燃烧转变为电能的微能源动力系统引起人们的广泛关注,取得了很大的研究进展。平板型微通道是微小型燃烧器经常采用的结构,氢气是最常用的燃料。在微通道燃烧器的基础研究和优化设计中,数值模拟是一种常用的研究方法。本文针对平板型微通道燃烧器研究中存在的不足之处,通过数值模拟研究了以下三个问题:(1)应用二维模型存在的误差与修正方法;(2)壁面厚度和材料对火焰发生倾斜的临界速度的影响;(3)上、下游壁面分别采用两种不同热导率的材料来提高火焰稳定性。
  通过对矩形截面微通道燃烧器的三维和二维数值模拟结果的比较,发现:由于低估了外壁面的散热损失,当微通道燃烧器的宽/高比较小时,应用二维模型会对模拟结果带来较大误差;当微燃烧器的宽/高比大于等于9时,应用二维模型获得的外壁面温度分布的误差小于5%。经过对二维模型的外壁面散热损失进行改进,使其散热损失比与实际的三维模型散热损失比相同,能显著改善二维模拟的准确性。
  对宽/高比很大的微通道燃烧器,通过二维数值模拟研究了壁面厚度和热导率对火焰发生倾斜时的临界进气速度(火焰倾斜极限)和被吹熄的临界速度(火焰吹熄极限)的影响。结果表明:二维平板型微通道燃烧器的壁面厚度和热导率越大,火焰倾斜极限越大,甚至不发生倾斜;同样,火焰吹熄极限也随壁面厚度和热导率的增大而增大。这是因为壁面厚度和热导率越大,通过上游壁面对未燃预混合气体的热循环比越大,同时通过外壁面的散热损失比越小,这些都有利于增强火焰稳定性。
  为了改善石英微通道燃烧器的火焰稳定性,提出了一种由高热导率的上游壁面(碳化硅材料)和低热导率的下游壁面(石英材料)构成的组合壁面微通道燃烧器。二维数值模拟结果表明:该燃烧器能够较为显著地提高火焰倾斜极限和吹熄极限以及燃烧效率,而且上游的碳化硅材料的长度越大,效果越明显。分析表明,这是由于组合壁面的微通道燃烧器能够同时提高热循环比和减小散热损失比带来的结果。
  总之,本文研究结果不仅改进了微通道燃烧的数值模拟精度,而且为微通道燃烧器的优化设计提供了理论指导。
其他文献
研究背景与目的  左室心肌致密化不全型心肌病(LVNC)是一种以心室肌小梁粗大为特征的心肌发育不良型先天性心肌病,其中心力衰竭是最常见的临床后果之一。然而,LVNC的心力衰竭的机制尚不完全清楚。据有关文献报告,SorbinandSH3domaincontainingprotein2(SORBS2)在心脏中高度表达,其主要功能是维持心肌细胞结构的完整性并且参与细胞粘附和信号转导。本研究发现,LVNC
研究背景与目的:  人多能干细胞向心肌分化为体外研究人类心脏发育提供了独特的机会,为心脏再生提供了潜在的细胞来源。然而,与研究心脏成熟和心肌细胞亚型特异性诱导的大量研究相比,多能干细胞早期心肌谱系命运决定的分子事件机制研究仍然欠缺。另一方面,能够催化染色质结构发生改变的酶——染色质重塑复合物,通常组装成多亚基的复合体来发挥功能,对于真核生物的基因转录、细胞周期发展、DNA复制和损伤修复具有至关重要
流出道发育异常所导致的心脏流出道畸形,是较为常见的一类先天性心脏病,严重危害人类生命健康。流出道的分隔和重塑异常是大多数流出道结构畸形,如法洛四联症,大动脉转位(Transposition of the Great Arteries,TGA),右室双出口等形成的根本原因。造成流出道畸形的因素非常复杂,包括环境因素和遗传因素等。然而,目前我们对于流出道畸形发生发展的机制却并不清楚。流出道发育过程中的
研究背景与目的:嗜铬细胞瘤(Pheochromocytoma,PCC)是一种起源于嗜铬细胞的罕见的神经内分泌肿瘤,分为家族性和散发性。现已发现15种以上的易感基因(RET、SDHx等)的失活或突变,可解释家族性PCC的发病机制,而对散发性PCC的研究尚不清楚。本课题组先前在散发性PCC中发现一种新的候选肿瘤抑制基因—GIPC2,目前对GIPC2在肿瘤中的功能及所调控的作用机制尚不明确。因此,本课题
食管癌是较为常见的恶性肿瘤,在全球最常见以及预后最差的肿瘤排名中分别位于第八和第六,全球每年由食管癌造成的死亡人数可达40万。按照食管癌组织的病理类型可将食管癌分为食管鳞癌(ESCC)和食管腺癌(EAC),在我国主要以食管鳞癌为主。  作为实体瘤的一种,食管癌和众多癌种一样,都经历着乏氧的肿瘤微环境。HIF1α作为肿瘤微环境中最重要的乏氧诱导因子,其参与肿瘤恶性进展的各个方面。如HIF1α可直接或
学位
研究背景:肝细胞癌(HCC)是世界上最常见的癌症之一,在2018年占新增癌症病例总数的4.7%,是导致癌症死亡的第三大原因。虽然有大量关于HCC的研究,然而其预后存活率仍然很低。内质网(ER)是调控蛋白质进行折叠修饰的重要细胞器,很多环境、生理和病理损伤因素会干扰内质网的蛋白折叠,从而触发内质网应激(ER stress),进而发生未折叠蛋白反应(UPR)。肿瘤的发生发展需要增加蛋白质合成与折叠,肿
学位
面对环境保护及节能降耗的要求日趋紧迫,铝合金和钢材的混合使用成为汽车车身结构轻量化的有效解决方案。由于铝合金熔点低、导热系数和电导率高以及表面极易形成氧化膜,不易于电阻点焊。同时,在铝-钢的电阻点焊中,铝合金和钢的传热和导电性能差异大,且在铝-钢界面形成金属间化合物,对接头的机械性能产生不利影响。本文利用创新开发的多环圆顶(Multi-Ring Domed,MRD)电极及焊接工艺焊接得到多种组合的
随着环保问题的日益突出,无铅焊料全面取代含铅焊料已是大势所趋。由于焊料在封装器件中起到了连接作用,因此焊料的性能决定了整个封装器件的可靠性。封装器件的结构形式及其服役环境决定了焊料会承受复杂的机械循环和温度循环载荷,而目前学术界对无铅焊料在循环应力/应变、循环温度载荷下的力学行为的研究相对较少,因此对焊料在机械载荷、温度载荷下的力学行为进行全面的实验研究及本构描述是很有必要的。  SAC305焊料
学位
为了实现内燃机高效清洁燃烧,均质压燃(HCCI)、反应活性控制压燃(RCCI)等多种燃烧模式相继提出,重整制氢技术在内燃机中也得到了广泛应用。氢气活性单一,这限制了内燃机缸内充量活性随工况变化的灵活控制,而燃料低温氧化产物的多样性为内燃机缸内活性的灵活变化提供了可能,且低温氧化可以根据边界条件变化具有灵活的产物组合,同时不受催化剂选择和活性优化的限制,低的重整温度更容易实现;因此,低温重整在实现内
学位
我国是世界上最大的煤炭生产和消费国。以褐煤和次烟煤为主的低阶煤占我国煤炭资源构成的57.4%,是我国未来能源供应的有效保障。低阶煤的煤化程度较低,碱及碱土金属(Alkali and Alkaline Earth Metals,AAEM)含量较高,AAEM会对其热利用过程产生明显的影响。一方面,AAEM会明显催化低阶煤的热解过程;另一方面,热解半焦中残留的AAEM又会明显影响半焦的反应性。因此,本文
学位