新型铝-铝和铝-钢电阻点焊接头疲劳与断裂性能研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:cnlhong197416
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
面对环境保护及节能降耗的要求日趋紧迫,铝合金和钢材的混合使用成为汽车车身结构轻量化的有效解决方案。由于铝合金熔点低、导热系数和电导率高以及表面极易形成氧化膜,不易于电阻点焊。同时,在铝-钢的电阻点焊中,铝合金和钢的传热和导电性能差异大,且在铝-钢界面形成金属间化合物,对接头的机械性能产生不利影响。本文利用创新开发的多环圆顶(Multi-Ring Domed,MRD)电极及焊接工艺焊接得到多种组合的铝-铝和铝-钢电阻点焊接头,系统研究了铝-铝和铝-钢电阻点焊接头的疲劳与断裂性能。
  首先,采用多环圆顶电极首次得到满足美国焊接学会标准静载强度要求的0.8mm厚的铝合金薄板电阻点焊接头。利用改进的剪切试验,得到铝-铝点焊接头熔核及热影响区的拉伸应力应变关系曲线。以上结果作为本文研究的基准,与铝-钢电阻点焊接头性能作对比。
  铝-钢电阻点焊接头界面由FeAl3和Fe2Al5两层化合物构成。开发了直接测量金属间化合物剪切强度的微型剪切试验。结果表明利用对称多环圆顶电极有效促进铝-钢界面金属间化合物均匀分布,当金属间化合物厚度小于2μm时,可获得满意的强度。推导了考虑熔核和热影响区材料的不同性能的铝-铝和铝-钢电阻点焊接头临界熔核直径计算公式并成功预测了铝-铝和铝-钢电阻点焊接头断裂形式。撕裂式试验件拉伸试验表明金属间化合物中剪切应力是界面断裂的主导因素,减小铝钢厚度比可避免界面断裂。
  研究了铝-钢电阻点焊接头试验件构型、钢板涂层类型,熔核直径、缺口根部角度及钢板厚度对点焊接头疲劳性能的影响。采用数字图像相关测试及有限元分析,发现相对于铝-铝点焊接头,铝-钢点焊接头铝侧熔核最大主应变更小,且随钢板厚度增加进一步减小。利用新开发的改进型撕裂式试验件实现对铝-钢点焊接头疲劳裂纹扩展的原位观测,揭示了疲劳失效机理。采用铝侧熔核最大主应变,获得了不同材料与厚度组合的铝-铝和铝-钢疲劳寿命归一化主曲线,结果优于结构应力法。
其他文献
中胚层细胞分化尤为复杂,可分化形成机体的众多组织器官。其中作为生命“发动机”的心脏和作为“燃油”的血液系统均为中胚层来源,对生命活动至关重要。心脏、血液系统异常可诱发多种严重疾病,这些疾病往往紧密相关:Hb(血红蛋白)病变类血液疾病通常伴随左心室功能障碍——心肌炎、心肌缺血甚至心力衰竭。而对相关细胞分化的研究为相应疾病的治疗带来了希望。因此,我们对中胚层细胞分化进行了研究以期找到该分化过程中新的功
寨卡病毒(ZIKV)属于黄病毒科中黄病毒属成员,基因组为正链单链RNA。在2015-2016年,ZIKV蔓延全球,引起人们重视。ZIKV基因组翻译产生三种结构蛋白和七种非结构蛋白,包括NS1,NS2A,NS2B,NS3,NS4A,NS4B和NS5。病毒RNA复制时,正链RNA作为模板,在NS5作用下,形成双链RNA。该双链RNA通过NS3解链,重新产生单链RNA模板,从而继续RNA的复制。可见,N
学位
第一部分IGF2BP3/PABPC1/ELAVL1复合物稳定抑癌转录本影响食管癌细胞的增殖  RNA结合蛋白(RNA binding proteins,RBPs)是真核生物转录后调控的关键分子之一。RBPs与单链或双链RNA结合,决定它们从合成到降解的命运。RBPs通常具有一个或多个结构域,并以序列特异性的方式识别RNA,因此结合RNA的亲和力和特异性不同。除了这些可以直接与RNA结合的结构域之外
学位
第一部分JOSD1通过稳定MCL1抑制线粒体凋亡通路进而促进妇科肿瘤的获得性耐药过程  妇科肿瘤是女性肿瘤中一种主要的类型,其中以子宫及卵巢肿瘤最为常见。卵巢癌病死率高居妇科肿瘤之首,而宫颈癌是女性第二常见的恶性肿瘤,妇科肿瘤的高发病率和高致死率严重危害了女性的生命健康和生活质量。而获得性耐药是导致妇科肿瘤不良预后的主要因素之一,但是其内在的分子机制尚未被完全阐释清楚。E3泛素连接酶与去泛素化酶通
学位
研究背景与目的  左室心肌致密化不全型心肌病(LVNC)是一种以心室肌小梁粗大为特征的心肌发育不良型先天性心肌病,其中心力衰竭是最常见的临床后果之一。然而,LVNC的心力衰竭的机制尚不完全清楚。据有关文献报告,SorbinandSH3domaincontainingprotein2(SORBS2)在心脏中高度表达,其主要功能是维持心肌细胞结构的完整性并且参与细胞粘附和信号转导。本研究发现,LVNC
研究背景与目的:  人多能干细胞向心肌分化为体外研究人类心脏发育提供了独特的机会,为心脏再生提供了潜在的细胞来源。然而,与研究心脏成熟和心肌细胞亚型特异性诱导的大量研究相比,多能干细胞早期心肌谱系命运决定的分子事件机制研究仍然欠缺。另一方面,能够催化染色质结构发生改变的酶——染色质重塑复合物,通常组装成多亚基的复合体来发挥功能,对于真核生物的基因转录、细胞周期发展、DNA复制和损伤修复具有至关重要
流出道发育异常所导致的心脏流出道畸形,是较为常见的一类先天性心脏病,严重危害人类生命健康。流出道的分隔和重塑异常是大多数流出道结构畸形,如法洛四联症,大动脉转位(Transposition of the Great Arteries,TGA),右室双出口等形成的根本原因。造成流出道畸形的因素非常复杂,包括环境因素和遗传因素等。然而,目前我们对于流出道畸形发生发展的机制却并不清楚。流出道发育过程中的
研究背景与目的:嗜铬细胞瘤(Pheochromocytoma,PCC)是一种起源于嗜铬细胞的罕见的神经内分泌肿瘤,分为家族性和散发性。现已发现15种以上的易感基因(RET、SDHx等)的失活或突变,可解释家族性PCC的发病机制,而对散发性PCC的研究尚不清楚。本课题组先前在散发性PCC中发现一种新的候选肿瘤抑制基因—GIPC2,目前对GIPC2在肿瘤中的功能及所调控的作用机制尚不明确。因此,本课题
食管癌是较为常见的恶性肿瘤,在全球最常见以及预后最差的肿瘤排名中分别位于第八和第六,全球每年由食管癌造成的死亡人数可达40万。按照食管癌组织的病理类型可将食管癌分为食管鳞癌(ESCC)和食管腺癌(EAC),在我国主要以食管鳞癌为主。  作为实体瘤的一种,食管癌和众多癌种一样,都经历着乏氧的肿瘤微环境。HIF1α作为肿瘤微环境中最重要的乏氧诱导因子,其参与肿瘤恶性进展的各个方面。如HIF1α可直接或
学位
研究背景:肝细胞癌(HCC)是世界上最常见的癌症之一,在2018年占新增癌症病例总数的4.7%,是导致癌症死亡的第三大原因。虽然有大量关于HCC的研究,然而其预后存活率仍然很低。内质网(ER)是调控蛋白质进行折叠修饰的重要细胞器,很多环境、生理和病理损伤因素会干扰内质网的蛋白折叠,从而触发内质网应激(ER stress),进而发生未折叠蛋白反应(UPR)。肿瘤的发生发展需要增加蛋白质合成与折叠,肿
学位