通信用毫米波功率放大器设计

来源 :东南大学 | 被引量 : 0次 | 上传用户:FLASH920
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着通信速率需求的日益增长,毫米波频段大量的频谱资源被逐渐重视。目前,毫米波频段功率放大器的研究已取得一定的成果,并在部分产品中得以应用。然而,在实现高性能、低成本、高可靠和面向特定应用的功率放大器上仍有许多实际问题值得研究。本文在回顾毫米波功率放大器设计技术的基础上,进一步研究了接收频带噪声抑制、宽带工作和d B线性功率检测等方向。为了满足Ka频段5G毫米波和卫星通信相控阵应用的需求,本文介绍了一款宽带功率放大器的设计方法。通过低耦合变压器、谐波控制电路的应用和有源和无源器件的优化,设计的功率放大器的增益、带宽、线性度等性能较为均衡。仿真结果表明,所设计的功率放大器的3 d B带宽从22.7至33.5 GHz,覆盖了Ka频段5G和卫星通信的主要频带。此外,在提供约12 d Bm的饱和输出功率时,功率放大器的峰值功率附加效率超过38%,适合于大规模相控阵的应用。为了满足功率检测需求,功率放大器的输出匹配网络中集成了一个d B线性功率检测模块,提供约30 d B的输出功率检测范围。在Ku频段的卫星通信应用中,发射、接收频段频率间隔短,大规模发射阵列的接收频带噪声会通过空间耦合影响到附近的接收阵列,降低其接收灵敏度和信噪比。为了解决这一问题,本文在功率放大器的级间匹配网络中增加陷波滤波器以抑制噪声。为了最大化噪声抑制并减小陷波滤波器对功率放大器性能的影响,设计中在初级线圈集成了一个串-并联LC陷波滤波器结构,并通过无源器件的联合优化提升了谐振结构的品质因数。设计的功率放大器采用65nm CMOS体硅工艺制造,其核心面积为0.35×0.85mm~2。测试表明,设计的功率放大器3 d B带宽从13.7 GHz至16.7 GHz,饱和输出功率为14.5 d Bm,峰值功率附加效率为24.1%。在10至12 GHz的接收频带范围,相对增益抑制超过30 dB。
其他文献
社会经济的全面快速发展,推动了人们对于电力行业的需求,同时以窃电为主的异常用电行为事件的发生次数也在逐年攀升,使得电力公司承受了巨大的经济损失,也给国家电网的安全运行造成了一定的安全隐患。传统的防异常用电手段主要以人工稽查的方式为主,会消耗巨大的人力和物力成本,且无法做到实时准确地定位异常用电的电力用户。近年来,智能电网和信息化技术在不断地发展,实现了电网电力负荷数据及时地收集和存储,为用户异常用
学位
学位
现代通信系统中,尤其在即将到来的物联网时代,高速、高稳定性、低功耗、低复杂度和高安全性已经成为常见的通信系统需求,首先高速和高稳定性意味着错误和重传应尽量避免,低密度奇偶校验(low-density parity check,LDPC)码作为5G NR标准中数据传输信道的标准码,同时也在各种标准中广泛使用;低功耗和低复杂度意味着电路规模的限制,在这方面,近似计算涌现成为一种新型的电路设计方法;安全
大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)是5G移动通信系统实现高频谱效率和高可靠性的关键技术之一。在基站端配置数十乃至上百的天线能够提高空间分辨率和频谱效率,使得基站同时为更多的用户进行服务。传统的大规模MIMO系统基于集中式架构设计,系统中存在大量的原始数据交互与汇聚,随着天线数量增多,中央处理单元面临总线带宽过大和计算复杂度过高等问题。同时,
MIMO传输因为其极高的频谱利用率成为5G和6G需要进一步扩大使用规模的技术。由于传统的MIMO预编码发送与检测方案,都是基于系统参量的统计模型而设计的,但是系统参量的实际运行并不完全与统计模型吻合,这就使得基于模型设计的发送与检测方案不能达到最佳的效果。为了克服这一困难,学术界提出使用基于数据的机器学习方法,来获得与系统实际场景高度吻合的发送与接收方案。论文围绕MIMO预编码与用户配对问题,研究
低功耗广域网(Low Power Wide Area Network,LPWAN)作为一种无线通信技术,为物联网提供了广泛的应用基础,由于具有低功耗、低成本与低吞吐量的特点,LPWAN能够实现海量物联网设备的接入。同时,LPWAN也可应用于大规模接入和低功耗等应用场景,诸如智能电网、智能城市、环境监测等应用。由于LoRa作为LPWAN技术中最前沿的技术之一,本文考虑对其展开深入研究。首先,本文论述
可见光通信(VLC)具有频谱资源丰富、保密性好、成本低、能耗小等优点,因而成为近年来无线通信研究热点之一。本文针对MIMO-VLC系统的空时编码方案,研究了空时分组码、低功耗空时分组码、空时分组码与空间调制的结合和超正交空时格码的设计方案。主要工作如下,一、将传统MIMO系统中的空时分组码方案,推广到MIMO-VLC场景。结合可见光通信系统的特点,针对MIMO-VLC系统,给出了两种将传统的空时分
在各类智能终端大范围普及的现代社会,伴随着云虚拟现实、物联网工业自动化、远程全息无人系统、数字孪生体域网等新型技术的出现和发展,无线通信业务需求已经呈现出爆炸式增长的态势。然而,日益紧缺的传统射频频谱资源已经无法满足急剧增长的数据传输速率需求。此时,光无线通信以其得天独厚的优势崭露头角,能够提供丰富的频谱资源、支持超高速的数据速率、满足未来移动通信高速业务场景需求,是一种极具潜力的无线传输技术。但
如今,越来越多的移动应用程序需要高计算能力才能提供智能服务。然而,移动设备通常具有非常有限的计算能力和电池容量,并且难以通过密集计算来支持这些应用。为了解决这个问题,移动边缘计算(Mobile-Edge Computing,MEC)作为一种有前途的解决方案被提出,它可以在网络边缘为移动用户提供计算服务。数据压缩技术可以减少数据大小,进而减少传输过程中的时延和能耗。本学位论文将数据压缩理论融入MEC