论文部分内容阅读
雷达辐射源识别是对预分选后的脉冲进行特征提取,并通过与数据库中已知信号特征参数进行对比和分析来确定辐射源种类的过程,是雷达侦察的核心任务之一。然而随着雷达技术不断发展,大量新体制雷达投入到装备应用中,信号环境日益恶劣,常规特征参数已远不能满足现代作战电子情报的需求。而雷达辐射源脉内特征分析通过获取更丰富本质的特征参数,成为雷达辐射源识别的研究热点和发展趋势,对雷达辐射源识别具有重要意义。本文主要围绕雷达辐射源脉内特征分析与识别关键技术展开深入研究,针对调制识别、调制参数估计和个体识别提出了相应地解决算法,并设计了一套雷达辐射源脉内特征分析与识别验证系统。主要工作包括:1、针对低信噪比条件下,复杂多类雷达辐射源信号调制识别存在特征提取困难、识别正确率低的问题,提出了一种基于时频分析和扩张残差网络的雷达辐射源调制识别算法。该算法利用时频变换Choi-Williams分布(CWD)将雷达辐射源信号一维时域波形转换成二维时频图像,并对时频图像进行预处理后,构建扩张残差网络来自动提取信号时频图像特征,实现调制识别。仿真结果表明,该算法抗噪性能好、泛化能力强,且提高了时频图像特征相似的类线性调频(LFM)信号识别正确率。2、针对高效分数阶傅里叶变换(FRFT)实现LFM信号参数估计时存在应用限制的问题,提出了一种基于功率谱分析和高效FRFT的LFM信号参数估计快速算法。该算法在利用功率谱粗估计信号带宽和中心频率的基础上,采用动态选取旋转角度、去中心频率和高斯平滑滤波对高效FRFT进行改进以有效估计归一化FRFT长度,进而利用不同旋转角度下FRFT的几何关系实现了LFM信号参数快速估计。仿真结果表明,该算法普适通用,抗噪性能好,估计精度高且具有较好的实时处理性能。3、针对基于无意调相特性实现雷达辐射源个体识别时存在分类性能不佳的问题,提出了一种基于无意调相特性分析和长短时记忆加全卷积网络的雷达辐射源个体识别方法。该算法首先对观测相位进行去调制处理和贝塞尔平滑,精确提取了无意调相特征曲线,然后构建长短时记忆加全卷积网络自动提取无意调相序列的联合特征实现了辐射源个体识别。仿真结果表明,该算法具有较好的抗噪性能,泛化能力强,在小样本下也能取得较好的识别效果。4、针对当前雷达辐射源识别领域普遍存在重理论研究、轻工程应用的不足,设计了一套雷达辐射源脉内特征分析与识别验证系统。该系统利用不同波形发生器模拟雷达辐射源发射脉冲信号,并以实时频谱分析仪作为信号采集平台进行数据采集和存储,最后在实测数据上验证了前述章节算法可行有效,且具有一定的工程应用价值。