论文部分内容阅读
三维装箱问题是一个典型的NP问题,它在物流行业中有广泛的应用。随着问题规模的不断增大,传统的优化算法会产生时间维数灾难问题,不能够理想地对大规模装箱问题进行优化装载。为了在合理的时间内找到近似最优解,部分学者开始研究各种启发式方法结合遗传算法的方法,并且取得了较好的结果。论文先介绍了装箱问题的研究背景、意义和历史现状,以及启发式算法和遗传算法的基本思想和实现原理,在介绍了前人研究工作之后,针对三维装箱问题,提出一种改进的基于三空间分割的启发式装箱算法和自适应的遗传算法相结合的混合遗传算法,本文算法中的遗传算法主要用来优化装箱序列和方向约束序列,而启发式算法是在已知装箱序列和方向约束序列的基础上,合理安排每个箱子的装箱位置。在本文介绍的启发式算法中,装箱序列是箱子类型编码的一种排列组合;每次只选择一种类型的箱子用于形成简单块,搜索不到合适的简单块,再选另外一种箱子;每次选择的简单块要求不仅能够装进当前的剩余空间中,而且使其能够最适合该剩余空间。为验证算法的有效性,采用由Loh和Nee于提出的15个算例(LN算例)对该算法进行测试,实验结果表明:在空间利用率这一方面,该算法是解决三维装箱问题的一种有效方法。