论文部分内容阅读
图像蕴含着丰富的信息,是人们相互交流的重要载体,其重要性不言而喻。数字图像的数据量非常庞大,图像压缩技术已成为解决海量图像数据存储和传输难题的不二之选。在图像压缩编码领域,分形图像压缩以其新颖的思想、潜在的高压缩比、解码图像与分辨率无关等优点受到广泛关注。自Jacquin提出能由计算机自动实现的分形图像压缩算法以来,在其基础上的改进算法不断被提出。发展至今,这一技术仍然不够成熟,主要表现在无人干预的情况下压缩比不高、编码时间长、在当前图像压缩算法中尚未占据主导地位。因此,提高编码速度和压缩比是解决分形图像压缩不能实用化的重要途径。 本文在讨论了分形相关理论和基本分形图像压缩算法的基础上,对分形图像压缩算法进行如下改进工作:(1)研究了满足匹配条件的定义域块的整体特征和互相匹配的值域块与定义域块的局部特征,发现仅使用标准差较大的定义域块就能满足分形图像压缩的需求和互相匹配的值域块与定义域块有相似或相反的亮暗分布的规律,提出了基于标准差和亮暗分布排序的快速分形图像压缩算法。仿真实验表明,该算法比基于方差的快速分形图像压缩算法和基于正负跳变的快速分形图像压缩算法的编码速度分别提高了9倍和5倍,解码图像的峰值信噪比(PSNR)和压缩比也略有提升。(2)在基于标准差和亮暗分布排序的快速分形图像压缩算法的基础上,结合编码速度更快的非搜索分形图像压缩算法,将原算法中固定标准差阈值和固定亮暗分布函数邻域阈值修改为固定标准差较大的定义域块数量和固定亮暗分布函数邻域定义域块数量,提出了基于标准差和亮暗分布排序的快速分形图像压缩算法的改进算法。仿真实验表明,改进算法的解码图像峰值信噪比比非搜索分形图像压缩算法提高了4dB,满足了人眼视觉的需求,编码速度较原算法提高了近10倍。(3)在基于小波系数零树结构的分形预测图像压缩算法的基础上,对绝对值较小的小波系数采用零树编码,利用图像小波分解后小波系数相似性的方向选择性将8种空间变换简化为4种,将不同层上的小波系数权重差异应用在值域树和定义域树的匹配准则中,提出了基于小波系数零树结构的分形预测图像压缩算法的改进算法。仿真实验表明,改进算法较原算法的编码速度提高了近10倍,解码图像的压缩比也有较大提升。