关联能量的若干结果

来源 :集美大学 | 被引量 : 0次 | 上传用户:joshua5201314
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
给定一个图G,它的关联能量(IE(G))定义为:IE(G)=∑n i=1√μ+j,其中μ+j(j=1,2,…,n)表示无符号拉普拉斯矩阵的特征值.在本文中,首先考虑了树的关联能量的排序,通过比较系数和能量积分的方法,得到关联能量第四、第五小的树;根据关联能量与能量的关系得出关联能量第四大的树.其次,考虑了树在度序列不变和最大度满足一定条件下的关联能量,找到关联能量最小时对应树的结构,并且进一步分析得出,两个不同的度序列满足一定的条件时,对应贪婪树的关联能量的大小关系.最后,分析了单圈图在给定围长的条件下的关联能量,得到了关联能量最大、最小时对应的单圈图.
其他文献
本文主要研究C中有界域上的逆紧全纯映射理论,全文共分三章。 第一章介绍了关于逆紧全纯映射方面的知识,特别是拟凸域上逆紧全纯映射的知识。概述了时下C中有界域上逆紧全纯
Web日志中包含了大量的用户浏览信息,如何有效地从其中挖掘出用户浏览兴趣模式是一个重要的研究课题。本文以Web日志中的点击流数据为基础,从统计分析和智能分析出发,引入Web挖
连通图的临界群是图生成树数目的一个加细,它是定义在图上的一个有限交换群。其群结构是图的一个精细不变量,它与图的Laplacian理论密切相关。本文主要研究3-循环图的临界群和
这篇论文深入研究了两个双曲方程的均匀化问题,一个是拟线性双曲方程的均匀化,另一个研究了带有振荡项的半线性双曲波动方程的全局吸引子的均匀化估计。 具体地说,本文利用一
风险理论是当前精算界和数学界研究的热门课题. 最初人们主要借助随机过程理论来研究复合泊松风险模型, 主要是研究破产概率、破产时的赤字、破产前瞬时盈余、破产时等精算量
本文主要研究了一类新型非线性浅水波方程(Dullin-Gottwald-Holm方程,简称为DGH方程)的散射理论和Cauchy问题的适定性理论。DGH方程是Dullin,Gottwald,Holm从Euler方程出发,利用
本文用图G来作为互连网络拓扑结构的模型.图G的直径是网络延迟和通信有效性的重要度量.在实时系统中,信息传输延迟被限制在某个时间内,超出这个时间接收到的信息是无效的.一种
本研究利用压缩感知理论进行水声信号测向,以正方形四阵元为模型,通过计算机仿真,说明了该方法的有效性。首先介绍了压缩感知的理论知识以及它的重构算法:匹配追踪算法和正交匹
连分式可以被看作M(o)bius变换的序列.上个世纪,连分式的解析理论在数学家Jones,Thron和Lisa等研究下已不断发展,并且广泛应用于超越函数、控制论、渐近级数等方面.近年来,Beardo
本文根据数学机械化的思想,在导师张鸿庆教授“AC=BD”理论的指导下,研究在弹性力学、流体力学、空气动力学、等离子体物理、生物物理和化学物理等现代科学技术中引出的非线性