量子热器件的相关理论研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:Aweichunxing890620
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
量子热力学是量子力学和经典热力学的交叉学科,近年来引起了人们的广泛关注。量子热力学不仅可以在量子层面上检验宏观热力学定律,而且也可以指导设计具有特殊功能的量子热器件。本文主要以低维量子系统为研究对象,利用开放量子系统理论,线性算符微扰论和全计数统计方法,研究系统稳态时的热流及热涨落,从而设计具有不同功能的量子热器件。本论文由以下六章组成:第一章,首先简单回顾了量子力学的发展史,然后介绍了量子热力学和开放量子系统理论的发展近况。第二章,主要介绍了热力学相关的基本概念,量子热器件和量子主方程,以及处理量子热涨落的线性算符微扰论和全计数统计方法。第三章,利用Qubit和Qutrit强相互作用的量子系统设计了量子热三极管。该系统中,Qubit与Qutrit之间共振耦合,Qubit与控制端热库接触,Qutrit同时与受控端的两个热库相互作用。利用全局主方程研究该系统稳态下的热流,发现控制端的热流较弱而受控端的两个热流较强。尤其是当调节控制端热流不仅可以使受控端热流迅速增大,实现放大功能,而且可以使其连续地变大,实现调节功能,甚至可以使其断流,实现开关功能。此外还发现,热流对低温端热库温度的涨落不敏感,从而实现稳流功能。第四章,利用三个强相互作用的Qubit设计了多功能量子热器件。该系统中,三个Qubit共振耦合且每个Qubit与其对应的热库相互作用,形成量子热器件的三个端口。通过全局主方程研究其稳态下的热流,发现该量子热器件除可以实现对受控端热流的放大、调节、开关、稳流功能外,还可以通过调节控制端的热流使任意端口的热流断开,实现热阀门功能;特别是当移除受控端某个热库时,该量子热器件可以阻碍热流的逆向流动,实现整流功能。第五章,利用二重简并四能级量子系统设计了依赖于初态的量子热器件。该系统同时与一个控制端热库和两个受控端热库接触,其中一受控端热库(或控制端热库)激发二重简并能态与最低能态(或最高能态)之间的跃迁,另一受控端热库激发最高能态跃与最低能态之间的跃迁。利用全局主方程研究系统的稳态,发现选取适当的自发衰减率会导致系统稳态依赖于初始暗态,从而影响稳态热流。量子系统除可以通过调节控制端的热流实现对受控端热流的放大和开关功能外,还可以通过高温热库做功从低温热库提取热量释放到室温热库,实现对低温热库的制冷。此外利用全计数统计方法和线性算符微扰论研究系统在长时极限下的热涨落。发现热力学不确定性关系和Fano因子与初始暗态和时间密切相关,初始暗态布居数决定了热涨落是否依赖于时间;暗态布居数可以增大超Poisson分布的窗口,使探测的光子更倾向于超Poisson分布;虽然长时极限下热力学不确定性关系依赖于初始态和时间,但其仍然保持成立。第六章给出总结和展望。
其他文献
对数据容量和频谱效率日益增长的需求加速了第五代通信(5G)的发展,MIMO技术结合合适的波束形成技术,能够显著提高频谱效率。为了降低MIMO技术带来的日益增长的射频硬件成本,最佳方案是将波束形成分配到数字域和射频电路中的混合波束成形结构。在最近提出的5G系统中,对射频链的需求急速增加,不仅扩大了发射机的体积,还产生了更强的非线性失真,因此需要采用有效的功率放大器线性化技术。本文研究了基于混合波束成
金属铜/铝及其合金被广泛应用于生产生活的众多领域。抑制铜/铝及其合金在相关腐蚀介质中的腐蚀具有重要的现实意义。通过添加缓蚀剂抑制铜/铝及其合金的腐蚀具有工艺简便、防护效果好和适用性强的特点,因而受到科研人员的广泛关注。目前,虽然已有大量关于铜/铝及其合金缓蚀剂的合成及应用研究报道,但是仍面临以下挑战:首先,已开发的铜/铝及其合金缓蚀剂的种类和数量要逊色于碳钢等其他金属材料缓蚀剂;其次,一些常见缓蚀
FeCrNi奥氏体不锈钢在230-450℃低温渗氮,可形成高氮(>18 at.%)过饱和面心立方(f.c.c.)相,常称为氮膨胀奥氏体(N-expanded austenite)相的改性层,该层具有优异的耐磨抗蚀抗疲劳复合性能,但是对其相结构研究的结论不统一、甚至彼此矛盾。为了研究氮膨胀奥氏体相的结构本质,分别选取Schaeffler图中Ni成分固定、Cr成分固定和Fe成分基本固定的三个系列共20
微细电火花加工技术因具有加工材料广泛和微尺度制造能力强大等特点,被认为是加工微深孔和三维复杂微结构件最具潜力的方法之一,广泛应用于军工国防、航空航天、信息产业以及生物医疗器械等关键零部件的加工。随着加工结构特征尺寸的减小,电极损耗及控制成为制约微细电火花加工技术工程化应用的关键问题之一。本文在国家自然科学基金(51005027)和辽宁省自然科学基金(201602030)的支持下,以实现微细电极控形
天然气水合物作为广泛分布的清洁能源,受到国内外普遍关注,日本与我国相继开展的海洋试采,初步验证了技术可行性,但是日产气量及持续开采时间,仍然不能满足规模化与商业化开采要求,其中储层渗透性质是重要影响因素之一。我国南海赋存水合物的沉积物以砂质和粉质粘土为主,其粒度分布与土颗粒的膨胀性和水敏性等特性都严重影响了渗透性,同时水合物开采中水合物分解及地层应力作用下的孔隙结构变化,也导致了气体产出的不确定性
有砟轨道结构目前仍是我国铁路交通运输的主要承载结构。随着近年来列车载重和车速的不断提高,对有砟道床的承载能力提出了越来越高的要求。在长期列车载荷作用下,有砟道床会出现不均匀沉降、道床弹性降低、脏污板结等问题,严重影响轨道结构的平顺性和稳定性。为掌握有砟道床的宏细观动力演化特征,有必要采用试验和数值模拟的方法从宏细观尺度对有砟道床的动力特性和劣化机理进行分析,为铁路有砟道床的结构设计和延长轨道服役周
纳米技术的发展拓展了人类认识世界的视野,纳米科技广泛应用于材料、微电子、能源以及生物医疗等领域,极大地提高了人们的生活质量。与宏观材料不同,纳米尺度下材料会展现出奇特的物理、化学、光学、电学以及力学性能。石墨烯和碳纳米管是典型的碳纳米材料,因其具有良好的力学、电学以及光学性能,在很多领域具有广阔的应用前景,并受到人们的广泛关注。但是,由于石墨烯以及碳纳米管具有较小的面外弯曲刚度和较大的表面积,层间
在非光滑复合优化中,有一类重要问题:两个函数和的极小化问题.许多的实际应用问题,例如:信号处理、多商品流、优化控制等,它们都可以抽象地表示或能转化为求两个函数和的极小化问题.因此对此类问题如何建立有效的求解方法,成为许多学者关注的课题.本文主要关注一类非光滑复合优化问题,包括:具有凸约束的凸函数和的极小化问题;非凸函数与凸函数和的极小化问题;非光滑双函数和的均衡问题.提出求解这类非光滑优化问题的各
太阳能作为一种清洁可再生能源,对其高效、深度开发利用并实现其建筑一体化,对有效解决我国建筑领域能源短缺和环境污染问题具有重要意义。建筑冬季需要采暖、夏季需要空调、全年需要供应电力和生活热水,面对建筑多样化的能源供应需求,目前现有的太阳能光热利用和光伏发电技术,无论是组件的光电或光热转换效率、还是功能单一的组件结构形式和太阳能利用系统形式等,都无法满足上述建筑多种用能需求,且存在着组件占地面积大等问
碳化硅颗粒增强铝基复合材料(SiCp/Al)是以铝或铝合金为基体,以碳化硅脆硬颗粒为增强相的一种金属基复合材料,具有高比强度、高比刚度、低密度和优越的热学性能,在航空航天、电子通讯、汽车等领域均具有广阔的应用前景。但是,高强度增强相SiC颗粒的加入使得SiCp/Al复合材料的切削加工变的极为困难,并会加速刀具磨损,降低工件加工精度,严重限制了该材料的广泛应用。其中,在SiCp/Al复合材料切削过程