一类非光滑复合优化的交替束方法

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:pizaiyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在非光滑复合优化中,有一类重要问题:两个函数和的极小化问题.许多的实际应用问题,例如:信号处理、多商品流、优化控制等,它们都可以抽象地表示或能转化为求两个函数和的极小化问题.因此对此类问题如何建立有效的求解方法,成为许多学者关注的课题.本文主要关注一类非光滑复合优化问题,包括:具有凸约束的凸函数和的极小化问题;非凸函数与凸函数和的极小化问题;非光滑双函数和的均衡问题.提出求解这类非光滑优化问题的各种交替型数值算法.本文的主要内容可以概括如下:1.第三章研究了求解具有凸约束的凸函数和的非光滑复合优化的内部交替线性化束方法.其主要思想是算法中的邻近项用二阶齐次像-距离函数(second-order homogeneous distance-like function)代替常用的欧氏范数,可以保证算法产生的迭代点在约束集的内部,从而生成一个可行的迭代点,这也是该方法被称为内部算法的主要原因.算法的主要步骤是利用束技术交替求解两个简单的强凸子问题,利用二阶齐次像-距离函数的性质,证明了内部交替线性化束方法的收敛性.2.第四章研究了具有非精确数据的lower-C1函数与凸函数和的非凸非光滑复合优化问题,对这类问题提出了交替线性化束方法.其主要思想是首先利用重新分配技术,构造了局部凸化函数.再利用邻近束技术,交替求解两个强凸二次规划,保证问题的线性误差的非负性,从而才能在较弱的条件下,证明了算法的收敛性.最后,通过数值实验证明了算法的有效性.3.第五章研究了模型更为一般的两个双函数(bifunctions)和的非光滑均衡问题,对这类问题提出一个基于束技术的加速交替方法.其主要思想是结合惯性(inertial)方法,每次迭代,交替求解两个简单的强凸子问题,并利用内部双稳定束方法来求解该非光滑子问题.在不要求函数是Lipschitz连续或H(?)lder连续的条件下,证明了算法的收敛性,并进行了数值实验,通过与已有的几个算法比较,验证了算法的有效性。
其他文献
在聚变托卡马克装置中,面向等离子体的部件(PFCs)承受着高的热负荷和粒子轰击,尤其是偏滤器区域。等离子体与面向等离子体的壁材料相互作用(PWI)导致PFCs的溅射,腐蚀、杂质产生、燃料滞留和杂质沉积。实验先进超导托卡马克EAST装置的第一壁材料是金属钼,上偏滤器靶是类ITER钨铜穿块结构,偏滤器拱顶和挡板是钨板热等压固定在CuCrZr基体。偏滤器的拱顶和挡板比偏滤器靶板承受的热负荷相对较低。然而
近年来,海洋养殖产业快速发展,并逐步成为海洋渔业资源开发的重要途径。深海网箱系统作为海洋养殖设施的主要工程结构之一,其安全关乎产业健康发展。系泊系统是保障深海网箱安全的关键因素之一。在长期、复杂的海洋动力环境条件下,系泊系统极值响应易超过设计阈值,并且系泊系统也可能发生疲劳失效。深海网箱系泊系统一旦发生破坏,将对深海网箱的安全造成严重威胁。因此,深海网箱系泊系统疲劳损伤及体系可靠度评估研究具有重大
随着高等级公路的迅速发展,汽车行驶平均速度越来越高,这给行车安全带来很大的隐患;轮胎作为汽车与地面接触的唯一部件,对保证汽车的操纵稳定性与行驶安全性至关重要。高速行驶汽车爆胎后会出现明显的偏航、横摆等现象,严重时将发生甩尾、激转,严重影响驾乘人员生命财产与道路交通安全。爆胎后驾驶员由于过度紧张、经验不足等问题,难以做出准确有效的修正行为,常因过度操作甚至误操作诱发严重交通事故。爆胎后车轮有效半径减
对数据容量和频谱效率日益增长的需求加速了第五代通信(5G)的发展,MIMO技术结合合适的波束形成技术,能够显著提高频谱效率。为了降低MIMO技术带来的日益增长的射频硬件成本,最佳方案是将波束形成分配到数字域和射频电路中的混合波束成形结构。在最近提出的5G系统中,对射频链的需求急速增加,不仅扩大了发射机的体积,还产生了更强的非线性失真,因此需要采用有效的功率放大器线性化技术。本文研究了基于混合波束成
金属铜/铝及其合金被广泛应用于生产生活的众多领域。抑制铜/铝及其合金在相关腐蚀介质中的腐蚀具有重要的现实意义。通过添加缓蚀剂抑制铜/铝及其合金的腐蚀具有工艺简便、防护效果好和适用性强的特点,因而受到科研人员的广泛关注。目前,虽然已有大量关于铜/铝及其合金缓蚀剂的合成及应用研究报道,但是仍面临以下挑战:首先,已开发的铜/铝及其合金缓蚀剂的种类和数量要逊色于碳钢等其他金属材料缓蚀剂;其次,一些常见缓蚀
FeCrNi奥氏体不锈钢在230-450℃低温渗氮,可形成高氮(>18 at.%)过饱和面心立方(f.c.c.)相,常称为氮膨胀奥氏体(N-expanded austenite)相的改性层,该层具有优异的耐磨抗蚀抗疲劳复合性能,但是对其相结构研究的结论不统一、甚至彼此矛盾。为了研究氮膨胀奥氏体相的结构本质,分别选取Schaeffler图中Ni成分固定、Cr成分固定和Fe成分基本固定的三个系列共20
微细电火花加工技术因具有加工材料广泛和微尺度制造能力强大等特点,被认为是加工微深孔和三维复杂微结构件最具潜力的方法之一,广泛应用于军工国防、航空航天、信息产业以及生物医疗器械等关键零部件的加工。随着加工结构特征尺寸的减小,电极损耗及控制成为制约微细电火花加工技术工程化应用的关键问题之一。本文在国家自然科学基金(51005027)和辽宁省自然科学基金(201602030)的支持下,以实现微细电极控形
天然气水合物作为广泛分布的清洁能源,受到国内外普遍关注,日本与我国相继开展的海洋试采,初步验证了技术可行性,但是日产气量及持续开采时间,仍然不能满足规模化与商业化开采要求,其中储层渗透性质是重要影响因素之一。我国南海赋存水合物的沉积物以砂质和粉质粘土为主,其粒度分布与土颗粒的膨胀性和水敏性等特性都严重影响了渗透性,同时水合物开采中水合物分解及地层应力作用下的孔隙结构变化,也导致了气体产出的不确定性
有砟轨道结构目前仍是我国铁路交通运输的主要承载结构。随着近年来列车载重和车速的不断提高,对有砟道床的承载能力提出了越来越高的要求。在长期列车载荷作用下,有砟道床会出现不均匀沉降、道床弹性降低、脏污板结等问题,严重影响轨道结构的平顺性和稳定性。为掌握有砟道床的宏细观动力演化特征,有必要采用试验和数值模拟的方法从宏细观尺度对有砟道床的动力特性和劣化机理进行分析,为铁路有砟道床的结构设计和延长轨道服役周
纳米技术的发展拓展了人类认识世界的视野,纳米科技广泛应用于材料、微电子、能源以及生物医疗等领域,极大地提高了人们的生活质量。与宏观材料不同,纳米尺度下材料会展现出奇特的物理、化学、光学、电学以及力学性能。石墨烯和碳纳米管是典型的碳纳米材料,因其具有良好的力学、电学以及光学性能,在很多领域具有广阔的应用前景,并受到人们的广泛关注。但是,由于石墨烯以及碳纳米管具有较小的面外弯曲刚度和较大的表面积,层间