光热系统纳米流体热物性某些关键效应的分子动力学研究

来源 :华北电力大学(北京) | 被引量 : 0次 | 上传用户:tiantianaiguo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当今世界,化石燃料日渐枯竭的同时,全球对能源的需求却在不断增长;此外,燃烧化石燃料造成的全球变暖和环境污染也是一个热点问题。因此,越来越多的研究人员试图找到更加有效利用可持续、可靠、清洁和绿色能源的新途径。其中,采集并利用太阳能就是解决上述问题的方法之一。然而,太阳能设备中利用传统流体工作时的能量利用率过低,需要改进以便转换出更多的电力和热量。比热容(cp)和导热系数(λ)是能量系统中与蓄热和传热有关的重要且基本的热物理性质。因此,准确评估上述参数对于表征纳米流体作为光伏/光热一体化(PVT)系统工作流体的传热性能具有重要意义。本文采用分子动力学模拟,对光伏/光热一体化系统中纳米流体比热容和导热系数等关键热特性进行了研究。首先,系统地研究了铜/水纳米流体中纳米颗粒粒径、界面和温度对纳米流体比热容以及纳米颗粒比热容的影响。同时,比较了 TIP4P刚性水模型和SPC/Fw柔性水模型在分子动力学中对比热容计算的影响。结果表明:纳米流体比热容随纳米颗粒尺寸的增加和温度的降低而增大。比热容的增大归因于微观粒子振动态密度(VDOS)揭示的界面效应,随着纳米流体比热容的增加,振动态密度的不匹配性接近于零。相比之下,纳米颗粒计算比热容值与理论值存在很大的差异,其原因可能是由于颗粒大小的影响以及与颗粒周围水分子的相互作用。与TIP4P模型相比,采用SPC/Fw模型计算的纳米流体比热容有所增加。在本工作中,以水作为基液加入SiO2@Au壳核纳米颗粒(@前表示圆核的物质,@后代表圆壳的物质)所形成的纳米流体为研究对象,利用分子动力学模拟研究了圆壳厚度占纳米颗粒半径的比值(以下将简称为“壳占比(Φ)”)对纳米流体比热容和导热系数的影响。结果显示:纳米流体比热容随Φ的增加而增加,而导热系数随Φ的增加而减少。通过对SiO2@Au纳米颗粒、SiO2圆核、Au圆壳和纳米颗粒表面周围水分子薄层内各种分子的振动态密度计算,探索了固/液界面和固/固界面对纳米流体比热容和导热系数变化的影响。通过水分子薄层与核壳纳米颗粒中分子振动态密度曲线之间的失配以及基液中水分子的径向分布函数曲线变化,进一步了解核壳纳米颗粒对基液中分子特性的影响。随后,讨论了热流的贡献,以观察纳米流体导热系数增加的机理,热流的两个组成部分对增强热流的贡献相当大。本研究通过计算得到了核壳纳米流体比热容和导热系数的新关联式,进而解释了各组分对纳米流体比热容和导热系数的贡献。通过Φ对上述纳米流体热物理性质影响的研究,为固/液界面和固/固界面效应提供了分子层面的解释。这些结果有助于理解核壳纳米流体热物理性质的变化以及其在光伏/光热一体化系统中太阳能热设备方面的应用。
其他文献
纯有机室温磷光材料因其相较于重金属类室温磷光材料而言具有廉价、易制备和低生物毒性的优势,在新型发光二极管、传感分析、信息存储与防伪技术和生物成像上具有潜在的应用前景。其中,开发适用于生物分析和生物成像技术的水相纯有机室温磷光材料更是近年备受关注的研究热点和难点。自2010年以来,大量的固相纯有机室温磷光材料研究表明,分子间和分子内非共价键相互作用对高效纯有机室温磷光发光过程起到重要作用,为水相纯有
三元稀土铝锗化物RAlGe(R=稀土)作为新型外尔半金属候选材料之一,由于其独特的能带结构和特殊的原子空间排列方式而表现出复杂的磁性、优异的电子输运和负磁电阻效应等奇异的物理性能,在未来开发能耗更低、集成度更高、功能性更强的电子器件方面具有潜在的应用价值。目前该材料体系尚处于基础研究阶段,还存在晶体结构不明确、电磁响应数据缺乏以及结构一性能关联性未知等科学问题有待研究。本篇论文采用非自耗真空电弧熔
利用太阳能将过量的CO2转化为高附加值的碳氢燃料,是应对全球变暖和解决能源危机的有效策略。六方硼碳氮(h-BCN)作为一类新兴的类石墨结构非金属半导体,其化学组成灵活多样,能带可调控性强,是极具潜力的CO2还原光催化剂。由于B、C、N在平面内的排布方式多样,h-BCN存在石墨烯/h-BN“拼接”的分相结构和元素分布较为均匀的非分相结构,结构的不同导致性能差异较大。分相h-BCN易于合成,但电荷迁移
镁碳耐火材料作为转炉出钢口首选材质,其服役性能与使用寿命直接影响到转炉作业率和生产安全。在服役中,由转炉周期性的冶炼和出钢所引起的循环冷热冲击是导致其损毁的重要原因。为满足转炉出钢口长寿化的要求,深入理解镁碳耐火材料的断裂行为并提升其抗热震性成为出钢口的发展方向。通常,调控碳含量和颗粒级配是提高镁碳耐火材料抗热震性的最为简单有效的方法,但调节碳含量或颗粒级配前后,镁碳耐火材料破坏过程中的能量耗散和
太阳能产汽技术作为太阳能热利用的新兴研究方向,在近十年来得到快速发展,其在海水淡化、废水处理、蒸馏灭菌及蒸汽发电等领域具有广阔应用前景。而采用纳米流体作为吸热工质体吸收太阳能是目前提升光-热-蒸汽转换性能的有效途径之一。工质中纳米颗粒能够与太阳光作用触发等离激元效应,从而提高其对入射光能量的吸收,同时由于纳米颗粒的大比表面积和尺寸效应,可显著提升工质换热能力。然而,其在光热转换过程中与水体进行热交
近年来,可供耐火材料企业使用的矿物原料在品位和质量上持续下滑,这使得高纯原料的生产成本不断提升。为寻求成本和性能之间的平衡以及资源的合理利用,在耐火材料成分设计时越来越多的目光聚焦于性价比更高的原料。尽管诸多研究指出耐火原料中的杂质会显著地影响耐火材料的服役性能,但目前对杂质元素在耐火材料中作用机理的认识仍不足,这严重制约了不定形耐火材料技术进步和竞争力提升。鉴于此,本工作以活性氧化铝微粉为研究对
单分子是发挥生物分子功能、参与化学反应的最小单元。单分子检测具有实时性和高灵敏度,能够揭示单个分子的特性,帮助理解分子相互作用机制,并获得传统方法难以得到的反应细节。因此,了解单分子检测的研究对象,设计相应的研究方法并开发研究平台,对于认识自然、促进人类健康与发展具有重要意义。本论文首先针对分子电子学领域构筑稳定的原子/分子结的难点,提出了利用柔性的纳米微滴管探针稳定原子/分子结,并深入研究了柔性
当前,挤包绝缘高压直流电缆及附件的国产化需求已迫在眉睫,长期限制其绝缘发展的难题为空间/界面电荷积聚问题,该问题是导致绝缘失效的源头,空间/界面电荷积聚会造成局部电场畸变,引发局部放电,加速绝缘老化和导致绝缘击穿,严重威胁电缆长期安全可靠运行。对空间电荷演化机制的模糊认知是制约其绝缘发展的瓶颈,空间电荷特性研究已被视为高压直流电缆及附件绝缘设计和评估的关键基础。高压直流电缆实际运行中,电缆导体中流
研究目的乳腺肿瘤是全球发病率最高的难治性疾病,因其低治愈率和高死亡率,医学界致力于攻克的重大难题,相关研究很多,但至今仍未能发掘出具有显著疗效而副作用小的治疗方法。《四部医典》等藏医经典中有比较丰富的乳腺疾病诊疗方法,但至今未能系统整理研究,其现代基础研究和临床研究更是处于空白。本研究旨在应用藏医学理论解读乳腺肿瘤的病因病机,筛选对症藏药组方,研究藏药七味草玉梅散醇提物对人乳腺癌细胞MCF-7增殖
智能化转型升级是钢铁工业可持续发展的有效途径。以泛在技术为特征的新一代信息技术在钢铁生产调度中的应用,使得钢铁企业调度环境呈现出具有丰富信息的泛在制造环境。这种泛在制造环境下的钢铁生产调度具有更大规模、更多目标以及动态不确定性,约束更加复杂多变,是一个不易解决的NP-Hard问题。传统的解决钢铁生产调度的研究无法满足个性化、多品种小批量的市场需求,难以适应泛在制造环境下钢铁生产大规模生产与个性化定