基于动力学的复合材料板结构损伤检测研究

来源 :沈阳建筑大学 | 被引量 : 0次 | 上传用户:lookluo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳纤维增强复合材料具有较高的比刚度和比强度,而且在减振、抗疲劳、耐高温、可设计性方面也优异于传统材料,在航空航天、建筑、汽车等领域拥有着广泛的应用前景。对于复合材料结构,在服役期间会因为外界冲击荷载以及长期的疲劳荷载作用造成结构损伤。且随着损伤的积累,结构的危险程度也逐步增大。因而找到一种损伤定位的方法,可以帮助人们尽早采取措施,避免结构突然发生破坏。本文以服役中复合材料结构健康监测和检测为工程背景,以振动力学为基础,采用实验分析与有限元数值模拟相结合的研究手段,针对薄板结构损伤识别问题进行了研究,主要研究内容如下:首先,介绍了健康监测技术在国内外的发展,对目前采用的各种基于动力学的损伤识别方法进行了简单介绍,探讨各种方法的优缺点。其次,总结了复合材料板的力学性能以及基于振动理论进行复合材料板模态分析的理论方法。再次,以存在单元凹口损伤的复合材料板为例,在四边固支和两边固支两边自由的边界条件下对X850碳纤维复合材料板的损伤检测进行了实验研究。采取表面粘贴压电陶瓷(PZT)片对板结构进行激励,得到其各阶模态并采用曲率模态的方法对损伤位置进行识别。采用两套压电主动式结构健康监测系统:压电陶瓷-激光多普勒测振仪(PZT-SLDV)模态测试系统和压电陶瓷-聚偏二氟乙烯(PZT-PVDF)模态测试系统对复合材料板材结构进行损伤检测。详细介绍了两套系统对薄板进行损伤识别的实验方案和实验操作流程。基于上述系统所测模态数据,采用提取曲率模态的损伤识别方法进行损伤识别。实验结果表明所采用的两套系统均可以有效识别碳纤维复合材料板的单元凹口损伤。最后利用ABAQUS有限元分析软件,建立了含损伤复合材料板的有限元分析模型,并对两种边界条件下所建立的有限元模型进行了模态计算,运用中央差分法计算其振型曲率,将有限元仿真结果与实验结果进行对比分析,验证了分析模型的有效性。并进一步运用有限元对不同损伤位置的复合材料板进行模拟,分析不同损伤位置对其使用曲率振型识别损伤的影响。
其他文献
毫米波太赫兹频段介于微波与红外波段之间,是电磁波频谱中很有研究价值的一个频段,目前在诸如遥感、无线电导航、等离子体诊断、雷达以及卫星通信等许多领域得到了越来越广泛
论文研究了聚苯乙烯负载硒酸催化氧化制备醛类化合物、1,2-二醇化合物和叔胺类氮氧化合物的方法及其机理。研究发现聚苯乙烯负载硒酸试剂具有高效、稳定、易于回收利用的特性
随着大数据的到来,网络用户的规模呈现爆发式增长。面对海量繁杂的网络大数据与千差万别的网络用户,如何从海量数据中精准的推荐给用户感兴趣的信息是十分重要的。推荐方法在一定程度上解决了信息过载问题,但传统推荐模型在挖掘数据特性和多样性推荐方面有待改进。为此,本文从挖掘数据特性和多样性推荐方向出发对基于马尔可夫决策过程的推荐方法开展了研究。首先介绍了本课题的研究背景及推荐系统的相关研究,阐述了本课题研究的
随着社会的发展,日益突出的环境问题使人们迫切渴望一种绿色能源。因此,氢能作为一种清洁能源受到人们的广泛关注。然而,传统制氢技术严重依赖于化石燃料。由于太阳能资源总量极大且利用方便,所以人们希望利用太阳能资源和可循环的原料产氢。在这种情况下,光催化制氢技术吸引了人们的广泛关注。然而,许多单组份光催化剂存在着电荷载流子分离程度较低、太阳光谱利用率不足、光稳定性较差和制备成本较高等劣势,这些问题极大得限
随着Android移动智能终端的普及,Android应用在改善人们生产生活的同时带来许多安全问题。现阶段针对Android Java层的安全保护技术已初步成熟,但Native层的代码保护还在发展中,因此本文对Android Native层的代码保护技术进行研究,利用替换混淆和控制流混淆技术,设计并实现面向Android Native层的代码保护方案。本文对整数这个常见的数据类型设计一种拆分方式,通
手性是自然界中广泛存在的现象,手性药物有着极其相似的物理化学性质,但部分手性药物在人体内的生物活性却有所差异,甚至截然不同,因此手性识别具有重要意义。用于手性识别的
物源分析在盆地沉积研究中一直占有很重要的位置,是盆地分析和古地理分析不可忽缺的内容,对确定物源区的位置、性质、沉积物搬运路径及整个盆地的沉积构造演化等方面有显著影
我国是一个海洋大国,舰船目标检测对于保卫我国领土主权有着重要意义。合成孔径雷达(SAR)作为一种不受天气状况影响、探测范围大的遥感成像系统,被广泛应用在舰船检测任务中。但SAR图像由于分辨率较低、噪声大并且同一目标在不同角度下的成像结果有较大差异,导致对SAR图像舰船目标进行检测时存在一定难度,在近海及岛礁区域容易出现虚警现象。随着深度学习方法在光学图像的目标检测问题中取得飞速发展,越来越多的研究
医学影像科学和人工智能在其各自领域内飞速发展,使得越来越多的国家将其上升为国家战略,以此来推动产品革命和社会革命。医学影像数据量大,专业的解读往往需要花费专家大量
真核细胞中,物质在细胞内各细胞器之间的转运主要依赖于膜泡运输。膜泡运输过程主要包括囊泡的出芽、转运、拴留、锚定和膜融合。运输囊泡与靶位膜的最初接触是通过拴留过程