【摘 要】
:
随着计算机技术的发展,机器视觉技术在工业机器人装配中的优势越来越显著。将机器视觉融入到多品种五金炊具的机器人生产线中,使其在装配等过程中代替人工完成任务,是现阶段智能化发展的重要趋势。因此本课题面向多品种五金炊具中的轴孔类部件的机器人系统应用关键技术展开研究。首先,选取合适的硬件设备,搭建Eye in Hand孔轴装配视觉检测系统。根据针孔相机成像模型,建立RGB-D深度相机模型,阐述深度信息和彩
论文部分内容阅读
随着计算机技术的发展,机器视觉技术在工业机器人装配中的优势越来越显著。将机器视觉融入到多品种五金炊具的机器人生产线中,使其在装配等过程中代替人工完成任务,是现阶段智能化发展的重要趋势。因此本课题面向多品种五金炊具中的轴孔类部件的机器人系统应用关键技术展开研究。首先,选取合适的硬件设备,搭建Eye in Hand孔轴装配视觉检测系统。根据针孔相机成像模型,建立RGB-D深度相机模型,阐述深度信息和彩色信息融合原理。对视觉系统进行标定,包括基于张正友法的相机标定以及EIH系统手眼标定。通过Matlab工具箱完成的相机标定误差在0.4个像素以内,证实标定得到的相机参数有效。其次,提出一种基于Mask R-CNN模型的目标识别和定位方法。通过单独制作的装配零件的数据集,对Mask R-CNN模型进行训练,结合深度信息和彩色信息融合实验,利用Mask R-CNN模型得到的掩膜与深度信息相结合获取工件中心位置。通过实验验证识别定位算法的快速性及准确性。再次,为了提高定位精度和抓取效率,对彩色图像采用灰度化、滤波处理等传统图像处理方法进行工件轴颈测量及抓取姿态估计。采用结合像素强度改进的Gamma校正图像对比度增强算法自适应的优化图像对比度。为了获取更精确的边缘信息,提出一种基于区域划分的自适应Zernike矩亚像素边缘检测方法,通过Canny边缘检测进行粗定位后,通过此算法进行精定位。最后,通过最小二乘直线拟合确定工件转角及基本尺寸。最后,通过传统图像处理中的椭圆检测进行装配孔位的识别与定位。分析基于随机霍夫变换的椭圆检测存在的优缺点。提出一种基于圆弧边缘聚类的椭圆识别方法,通过图像预处理、边缘连接、圆弧聚类、最小二乘拟合等一系列过程实现快速、精确的椭圆检测,继而确定圆心位置,进行孔轴对准装配实验,实现轴孔对齐,通过实验验证此方法的有效性和可靠性。
其他文献
雷达是现代战争中不可或缺的组成部分。随着电子对抗技术的快速发展,雷达所面临的环境也日益复杂。通常雷达的接收信号中,除了所需的回波信号之外,往往还包含着大量的干扰。由于这些干扰的存在,使得雷达在对目标进行跟踪和检测的时候存在着极大的困难。因此为了使得雷达能够进行正常的工作,就需要对接收到的信号中不同干扰进行分类,从而针对不同的干扰来进行抑制和消除。但是由于雷达的特殊性使得无法获得大量的数据来进行相关
机器人自动化抓取在物体搬运、物流分拣、上下料等工作中具有广泛的应用前景,在即将到来的老龄化社会中更是如此,然而现在机器人智能化程度普遍较低,不能满足复杂条件下的抓取需求。实现机器人智能化抓取的关键技术之一是位姿估计,即通过视觉、距离等传感器采集的数据确定抓取目标相对于机器人的位置和姿态。得益于计算机算力的不断提升,深度学习技术在计算机视觉方面有了长足的发展,这也为机器人感知技术提供了新的技术思路和
遥感目标检测算法是近几年来目标检测领域新兴的一个研究方向,并迅速受到了越来越多的关注。遥感场景相较于普通目标检测场景来说,场景中目标尺度变化很大、小目标多、目标的排列杂乱无序、背景环境复杂,这些都为准确的目标检测造成了困难。本文对基于神经网络的目标检测算法发展脉络进行梳理,分析现有算法的优缺点,对遥感目标检测的各种算法进行了详细的研究,最终选择了无锚点框和旋转框结合的目标检测算法作为设计的方向,设
急性心肌梗死(Acute myocardial infarction,AMI)发病率和死亡率都很高,是世界上主要的危及生命的疾病之一。生物标志物是一类可测量和量化的生理参数,常作为疾病确诊,病情状况评估和治疗水平监控的重要参照指标。血清中的肌酸激酶同工酶(Creatine kinase MB,CK-MB)是AMI诊断相关的主要生物标志物之一,目前的AMI诊断要求现场取样,并利用相关仪器检验,耗时长
水下航行器在维护海洋的生态平衡、保护海洋水环境、发展海洋国防事业等领域扮演着重要的角色。随着仿生学的兴起,越来越多的研究人员开始将仿生学理论应用于水下航行器的研制中。随着研究的不断深入,基于传统驱动方式的水下仿生机器人弊端不断暴露出来,水下机器人对自由度、小型化、轻柔化、隐蔽性的要求越来越高。针对此,研究人员越来越多地利用智能材料进行水下机器人的仿生研制,但由于这种仿生机器人的自主游动及小型化,轻
旋翼类飞行器一直以来在各个领域都有广泛的研究,这其中就包括旋翼飞行器的自主降落技术,为了实现旋翼飞行器能够精准稳定降落到未知的平台上,并提高其自主决策能力,同时提高我国海上军事作战能力,实现飞行器高精度的降落到舰艇上,因此,如何设计一款自主降落控制系统成为热门话题。本文首先研究X型四旋翼的自主降落控制系统,包括传统控制方法设计的控制系统和基于深度确定性策略梯度(Deep Deterministic
人体运动过程的关节力矩解算是人体运动力学研究领域的重要组成部分,获取准确可靠的关节力矩值对于医疗诊断、康复训练、人机交互等领域的发展具有极其重要的意义。柔性可穿戴助力机器人是近年来人机交互领域的重要分支,主要目标是对人体运动提供有效助力,减少运动中的能量代谢消耗。其对人体的辅助,在本质上是力矩的辅助,因此通过人机交互设备获得下肢关节力矩曲线作为助力策略参照在柔性可穿戴助力设备研究中是一意义非凡且极
生物鱼类在游动时可以通过肌肉调节自身的刚度改变鱼体固有频率,从而与摆动频率相匹配,以达到更优秀的游动性能,并且部分鱼类的摆动频率可达20Hz及以上,以此带来的游动速度可超过15体长每秒。正是由于鱼类这些出色的调节机制及游动性能,吸引了众多研究学者。本论文以虚拟转动副的方式实现柔性机器鱼的主要关节,其中虚拟转动副是基于张拉整体结构组成的,由两个刚性平台通过非接触的形式实现类似转动副的功能,并且这种结
在航天技术发展的过程中,为了压缩航天试验的成本,需要提前进行大量的地面仿真实验。气浮台凭借成本低、可持续时间长、扰动小的特点,可以有效检验控制算法作用于航天器的控制效果,成为辅助研究航天器交会对接、空间目标捕获、卫星编队等航天任务的重要手段。相比传统的渐进控制方法,有限时间控制方法具有更快的收敛速度、更强的抗干扰能力和更高的稳态精度,在航天器姿态控制、机械臂控制等领域应用广泛。本文主要研究三自由度
双足机器人相比于一般的机器人有着更好的环境适应性和灵活性,相对来说更容易在一些复杂想地形上行走,如山地丛林等,因此受到军事、娱乐等领域的广泛关注。而由Mc Geer所开创的被动行走研究则为双足机器人行走研究提供了一种新的方向,被动行走机器可以在斜面上不依赖外界能量输入,仅依靠重力进行行走,相比于传统机器人行走有着更加拟人化的步态和更高的能量利用效率。本课题主要希望能够对被动行走的机理进行研究,为之