论文部分内容阅读
大麦是世界上最古老、分布种植最广、经济价值极高的谷类作物之一,其产量和面积在禾本科作物中一直居第四位。高产、优质、多抗一直是大麦遗传改良的主要目标,然长期的驯化选择,特别是经过近代育种和集约化种植,使得大麦不少有益等位基因丢失,遗传多样性明显降低,出现了遗传基础狭窄和基因同质化等问题,已成为实现主要育种目标的瓶颈。一年生野生大麦(Hordeum vulgare ssp. spontaneum)是栽培大麦(Hordeum vulgare ssp. vulgare)的祖先,具有广阔的自然分布和生态适应性。一直以来,一年生野生大麦因其丰富的自然变异与遗传多样性,以及与栽培大麦无生殖隔离,被认为是栽培大麦性状改良的初级基因库。充分利用野生种群中的有利基因变异在某种程度上不仅取决于对野生种群遗传结构的了解,包括确定有哪些野生祖先或者野生祖先的哪些部分对驯化后代有什么样的遗传贡献,而且取决于对现有驯化后代遗传基础和遗传背景的认识。大麦的驯化传播一直是学术界的热点问题之一,时至今日仍然存在着争议。本研究以不同地理来源的野生大麦和遍布世界范围的栽培大麦为研究对象,通过基因重测序和驯化相关性状-蛋白质含量的鉴定,分析了世界各地大麦群体间的遗传分化、系统发育和群体结构,研究了候选基因变异与大麦蛋白质含量的遗传关系,了解了世界大麦基因池的形成和变化特点,为进一步探析栽培大麦的起源驯化特点与规律提供了诸多有益数据。主要结果如下:
1.世界不同地理来源大麦群体的蛋白质平均含量不同。118份栽培大麦和93份野生大麦的蛋白质含量(GPC)在6.73~12.35%之间,平均为9.43%。总体上,野生大麦的平均GPC(10.44%)要高于栽培大麦。单倍型和GPC的关联分析发现NAM-1基因的两种特异性单倍型(Hap2和Hap7)对GPC有显著影响,由NAM-1基因编码区第544位的单碱基突变而导致的氨基酸非同义替换可能通过影响蛋白质的折叠,而导致GPC的差异。
2.不同来源野生大麦群体表现出显著的遗传差异。在单倍型组成上,野生大麦各具有不等数量的种群特异性单倍型。NAM-1基因在群体中的变异显示,3种种群特异性单倍型是西藏野生大麦所特有的,4种是西南亚地区野生大麦特有的,而在中亚野生大麦中未发现具有种群特异性的单倍型。RPB2基因显示有15种、2种和1种群体特异性单倍型分别为西南亚、中亚和西藏野生大麦群体所特有。序列变异分析发现,不同的野生大麦具有其种群特异性的SNP或序列变异。候选基因扩增模型在不同野生大麦群体也表现不同。通过系统发育分析和群体结构分析也显示,西藏、西南亚和中亚野生大麦之间存在一定程度的结构分离。
3.西藏野生大麦对栽培大麦基因池具有重要贡献。NAM-1基因的群体变异显示西藏野生大麦具有高的遗传多样性,其中单倍型多样性为0.679、单位点核酸多样性为0.00090±0.00058、核苷酸多样性为0.00103。单倍型分析显示,世界栽培大麦中广泛分布着西藏野生大麦的特有单倍型。以西藏野生大麦特异性NAM-1基因单倍型Hap7和RPB2基因单倍型Hap2为例:Hap7占所有供试大麦的37.4%,在世界不同的栽培大麦群体中其频率分布高达47.5%到87.5%;类似的,Hap2占所有供试大麦的32.5%,在所有栽培大麦群体中的分布频率从36.1%到77.8%不等。此外,基因扩增模型、序列比较、系统发育和群体结构分析也揭示了世界栽培大麦与西藏野生大麦之间的密切关系。因此,我们的结果支持青藏高原是栽培大麦的驯化中心之一。
4.不同地理群体间遗传组成的差异表明,西南亚野生大麦和西藏野生大麦是现代栽培大麦遗传构成的两大来源,我们的结果支持了栽培大麦的多起源理论。此外,我们认为,大麦的多次驯化和驯化后的基因互渗是现代大麦基因池形成的重要动力。单倍型分析显示,东、西方大麦在遗传组分上存在着交换。单倍型频率分布在西南亚、中亚和西藏野生大麦间呈现出一种非均衡的分布模式,认为东、西方大麦广泛的遗传交流可能最初是通过中亚发生的。伴随着人类迁徙,种质交换、引种和杂交等农事活动,长时间的基因流动可能导致了不同区域的遗传组分向其他地域的转移。
5.不同的野生大麦和栽培大麦表现出不同的驯化痕迹和选择效应。与野生大麦相比,栽培大麦发生了等位基因的丧失。在我们鉴定的10种NAM-1基因单倍型中,只有3种出现在遍布世界范围的栽培大麦中,而鉴定的21种RPB2单倍体,只有8种出现在栽培大麦中,而大多数则聚集在野生大麦中。遗传多样性在栽培大麦中也明显降低。以RPB2结果为例,栽培大麦的核苷酸多样性降低了18.2%,单倍型多样性降低了13.5%,而单位点多样性甚至降低了两倍。我们认为,在驯化和育种过程中,遗传瓶颈效应导致了栽培大麦等位基因的丧失和遗传多样性的减少。中性检验表明,不同地理和生态环境的大麦群体可能遭受了不同的选择压力。
本研究不仅为了解世界栽培大麦的起源与驯化提供了新的看法,同时也增强了对于在不同地理环境下基因渗入和选择压力对全球不同大麦群体遗传多样性塑造的认识,为野生大麦遗传资源的发掘和有效利用提供了有益信息。
1.世界不同地理来源大麦群体的蛋白质平均含量不同。118份栽培大麦和93份野生大麦的蛋白质含量(GPC)在6.73~12.35%之间,平均为9.43%。总体上,野生大麦的平均GPC(10.44%)要高于栽培大麦。单倍型和GPC的关联分析发现NAM-1基因的两种特异性单倍型(Hap2和Hap7)对GPC有显著影响,由NAM-1基因编码区第544位的单碱基突变而导致的氨基酸非同义替换可能通过影响蛋白质的折叠,而导致GPC的差异。
2.不同来源野生大麦群体表现出显著的遗传差异。在单倍型组成上,野生大麦各具有不等数量的种群特异性单倍型。NAM-1基因在群体中的变异显示,3种种群特异性单倍型是西藏野生大麦所特有的,4种是西南亚地区野生大麦特有的,而在中亚野生大麦中未发现具有种群特异性的单倍型。RPB2基因显示有15种、2种和1种群体特异性单倍型分别为西南亚、中亚和西藏野生大麦群体所特有。序列变异分析发现,不同的野生大麦具有其种群特异性的SNP或序列变异。候选基因扩增模型在不同野生大麦群体也表现不同。通过系统发育分析和群体结构分析也显示,西藏、西南亚和中亚野生大麦之间存在一定程度的结构分离。
3.西藏野生大麦对栽培大麦基因池具有重要贡献。NAM-1基因的群体变异显示西藏野生大麦具有高的遗传多样性,其中单倍型多样性为0.679、单位点核酸多样性为0.00090±0.00058、核苷酸多样性为0.00103。单倍型分析显示,世界栽培大麦中广泛分布着西藏野生大麦的特有单倍型。以西藏野生大麦特异性NAM-1基因单倍型Hap7和RPB2基因单倍型Hap2为例:Hap7占所有供试大麦的37.4%,在世界不同的栽培大麦群体中其频率分布高达47.5%到87.5%;类似的,Hap2占所有供试大麦的32.5%,在所有栽培大麦群体中的分布频率从36.1%到77.8%不等。此外,基因扩增模型、序列比较、系统发育和群体结构分析也揭示了世界栽培大麦与西藏野生大麦之间的密切关系。因此,我们的结果支持青藏高原是栽培大麦的驯化中心之一。
4.不同地理群体间遗传组成的差异表明,西南亚野生大麦和西藏野生大麦是现代栽培大麦遗传构成的两大来源,我们的结果支持了栽培大麦的多起源理论。此外,我们认为,大麦的多次驯化和驯化后的基因互渗是现代大麦基因池形成的重要动力。单倍型分析显示,东、西方大麦在遗传组分上存在着交换。单倍型频率分布在西南亚、中亚和西藏野生大麦间呈现出一种非均衡的分布模式,认为东、西方大麦广泛的遗传交流可能最初是通过中亚发生的。伴随着人类迁徙,种质交换、引种和杂交等农事活动,长时间的基因流动可能导致了不同区域的遗传组分向其他地域的转移。
5.不同的野生大麦和栽培大麦表现出不同的驯化痕迹和选择效应。与野生大麦相比,栽培大麦发生了等位基因的丧失。在我们鉴定的10种NAM-1基因单倍型中,只有3种出现在遍布世界范围的栽培大麦中,而鉴定的21种RPB2单倍体,只有8种出现在栽培大麦中,而大多数则聚集在野生大麦中。遗传多样性在栽培大麦中也明显降低。以RPB2结果为例,栽培大麦的核苷酸多样性降低了18.2%,单倍型多样性降低了13.5%,而单位点多样性甚至降低了两倍。我们认为,在驯化和育种过程中,遗传瓶颈效应导致了栽培大麦等位基因的丧失和遗传多样性的减少。中性检验表明,不同地理和生态环境的大麦群体可能遭受了不同的选择压力。
本研究不仅为了解世界栽培大麦的起源与驯化提供了新的看法,同时也增强了对于在不同地理环境下基因渗入和选择压力对全球不同大麦群体遗传多样性塑造的认识,为野生大麦遗传资源的发掘和有效利用提供了有益信息。