论文部分内容阅读
棉花是世界上最重要的天然纤维作物,棉花纤维长度和强度是纤维品质的关键特征,纤维强度(FS)与纤维次生细胞壁(SCW)的生物合成密切相关。三氨基酸环延伸(TALE)超家族转录因子是同源结构域蛋白的一类,参与调节植物生长发育中的多种生物过程。其中一些模式植物的TALE家族成员已被证实在调节次生细胞壁生物合成过程中起关键作用;棉花中个别TALE转录因子的功能研究表明,其会通过影响棉纤维次生细胞壁的沉积从而影响棉花纤维品质的形成。然而,总体上人们对棉花(Gossypium spp.)中TALE成员的功能知之甚少。在本研究中,我们专注于TALE超家族基因功能的鉴定和分析,并进行了以下工作:
1.在全基因组水平,对亚洲棉、雷蒙德氏棉、海岛棉和陆地棉中TALE超家族基因进行了综合鉴定分析。在4个棉种中分别鉴定了46,47,88个和94个TALE超家族基因。系统发育和进化分析表明两个棉花TALE家族(包括BEL1-Like和KNOX家族)的进化是高度保守的。基因结构分析也表明了GhTALE成员在进化选择中的保守性。启动子顺式元件和表达模式的分析揭示了GhTALE基因在纤维次生细胞壁生物合成中潜在的转录调控功能和对某些植物激素的响应。用次生细胞壁相关QTL对GhTALE转录因子进行全基因组共定位分析表明,许多GhBEL1-Like家族基因和ClassIIKNOX家族中的GhKNAT7亚群同源基因可能参与了棉花纤维强度形成的调控。过表达GhKNAT7-A03和GhBLH6-A13会显著抑制拟南芥束间纤维中木质纤维素的合成,进一步证明了不同物种间KNAT7与BLH6同源基因功能的保守性。酵母双杂交(Y2H)实验表明GhKNAT7亚群同源基因和一些GhBEL1-Like蛋白(包括GhBEL1、GhBLH1、GhBLH5和GhBLH6亚群成员)之间存在广泛的互作关系。酵母单杂交(Y1H)实验确定了许多GhTALE成员启动子区包含上游GhMYB46转录因子的结合位点,也证明了GhTALE异二聚体(KNOX/BELL)可以直接靶向结合并调控下游纤维素与木质素生物合成相关结构基因的表达。这为我们更深入了解TALE家族基因的功能,尤其是在构建次生细胞壁生物合成调控网络方面做出了一定的贡献。
2.对GhBEL1-Like家族基因GhBLH7-D06的功能进行了深入的研究。组织表达模式表明GhBLH7-D06也参与棉花纤维和茎秆次生细胞壁的合成调控。对大丽轮枝菌侵染与植物激素处理的响应表达表明,GhBLH7-D06是棉花黄萎病抗性的负调控因子,且对激素茉莉酸甲酯响应,也说明其可能是两者之间的桥梁。通过病毒诱导的基因沉默(VIGS)技术,我们发现降低GhBLH7-D06的表达,可以增强棉花植株对黄萎病菌的抗性,阻碍黄萎病菌的传播与定殖,而抗性的获得可能主要是由于木质素合成代谢相关基因的显著高调表达引起的,这也再次证明了GhBLH7-D06负调控棉花黄萎病抗性的功能。通过酵母双杂交文库筛选,以及双分子荧光互补技术确认,我们发现一个OFP转录因子GhOFP3-D13能够与GhBLH7-D06发生互作,且GhOFP3-D13是一个茎秆特异表达的棉花黄萎病抗性负调控因子。进一步,我们通过酵母单杂交实验与双荧光素酶报告系统发现GhBLH7-D06能够靶向结合GhPAL-A06的启动子区域,抑制其表达,从而抑制木质素的生物合成。而GhOFP3-D13则是作为辅助因子参与调控次生细胞壁的沉积以及棉花植株的黄萎病抗性。
这些调控机制的发现不仅丰富了TALE转录因子的调控网络,为我们更深入地理解棉花纤维强度的形成及植株黄萎病抗性的获得提供了理论依据,也为我们高效快速地改良棉花种质发掘了新的核心基因资源。
1.在全基因组水平,对亚洲棉、雷蒙德氏棉、海岛棉和陆地棉中TALE超家族基因进行了综合鉴定分析。在4个棉种中分别鉴定了46,47,88个和94个TALE超家族基因。系统发育和进化分析表明两个棉花TALE家族(包括BEL1-Like和KNOX家族)的进化是高度保守的。基因结构分析也表明了GhTALE成员在进化选择中的保守性。启动子顺式元件和表达模式的分析揭示了GhTALE基因在纤维次生细胞壁生物合成中潜在的转录调控功能和对某些植物激素的响应。用次生细胞壁相关QTL对GhTALE转录因子进行全基因组共定位分析表明,许多GhBEL1-Like家族基因和ClassIIKNOX家族中的GhKNAT7亚群同源基因可能参与了棉花纤维强度形成的调控。过表达GhKNAT7-A03和GhBLH6-A13会显著抑制拟南芥束间纤维中木质纤维素的合成,进一步证明了不同物种间KNAT7与BLH6同源基因功能的保守性。酵母双杂交(Y2H)实验表明GhKNAT7亚群同源基因和一些GhBEL1-Like蛋白(包括GhBEL1、GhBLH1、GhBLH5和GhBLH6亚群成员)之间存在广泛的互作关系。酵母单杂交(Y1H)实验确定了许多GhTALE成员启动子区包含上游GhMYB46转录因子的结合位点,也证明了GhTALE异二聚体(KNOX/BELL)可以直接靶向结合并调控下游纤维素与木质素生物合成相关结构基因的表达。这为我们更深入了解TALE家族基因的功能,尤其是在构建次生细胞壁生物合成调控网络方面做出了一定的贡献。
2.对GhBEL1-Like家族基因GhBLH7-D06的功能进行了深入的研究。组织表达模式表明GhBLH7-D06也参与棉花纤维和茎秆次生细胞壁的合成调控。对大丽轮枝菌侵染与植物激素处理的响应表达表明,GhBLH7-D06是棉花黄萎病抗性的负调控因子,且对激素茉莉酸甲酯响应,也说明其可能是两者之间的桥梁。通过病毒诱导的基因沉默(VIGS)技术,我们发现降低GhBLH7-D06的表达,可以增强棉花植株对黄萎病菌的抗性,阻碍黄萎病菌的传播与定殖,而抗性的获得可能主要是由于木质素合成代谢相关基因的显著高调表达引起的,这也再次证明了GhBLH7-D06负调控棉花黄萎病抗性的功能。通过酵母双杂交文库筛选,以及双分子荧光互补技术确认,我们发现一个OFP转录因子GhOFP3-D13能够与GhBLH7-D06发生互作,且GhOFP3-D13是一个茎秆特异表达的棉花黄萎病抗性负调控因子。进一步,我们通过酵母单杂交实验与双荧光素酶报告系统发现GhBLH7-D06能够靶向结合GhPAL-A06的启动子区域,抑制其表达,从而抑制木质素的生物合成。而GhOFP3-D13则是作为辅助因子参与调控次生细胞壁的沉积以及棉花植株的黄萎病抗性。
这些调控机制的发现不仅丰富了TALE转录因子的调控网络,为我们更深入地理解棉花纤维强度的形成及植株黄萎病抗性的获得提供了理论依据,也为我们高效快速地改良棉花种质发掘了新的核心基因资源。