【摘 要】
:
铝合金挤压是一种金属成形工艺,和其他传统的铝合金加工工艺相比,具有组织性能好,材料利用率和成形精度高等优点。但是目前,挤压模具的发展主要是基于模具设计者通过反复试验获得的经验知识,而这种经验知识的积累是昂贵、耗时和效率低下的,故本文采用数值模拟的方法来研究铝合金的挤压成形过程。本文的研究对象为7075铝合金舵机座,采用热挤压工艺来生产此零件,以避免采用机加工生产带来的加工周期长,材料利用率低等问题
论文部分内容阅读
铝合金挤压是一种金属成形工艺,和其他传统的铝合金加工工艺相比,具有组织性能好,材料利用率和成形精度高等优点。但是目前,挤压模具的发展主要是基于模具设计者通过反复试验获得的经验知识,而这种经验知识的积累是昂贵、耗时和效率低下的,故本文采用数值模拟的方法来研究铝合金的挤压成形过程。本文的研究对象为7075铝合金舵机座,采用热挤压工艺来生产此零件,以避免采用机加工生产带来的加工周期长,材料利用率低等问题。对零件进行结构和工艺性分析,制定不同挤压工艺方案,并确定挤压工艺参数范围,利用三维建模软件Creo对模具及坯料进行建模,将建好的模型导入到Deform-3D软件中,调整好模具和坯料的位置关系并设定好工艺参数进行数值模拟,通过分析模拟后处理中的坯料流动、挤压载荷、等效应力应变场以及温度场分布等数据,确定最佳工艺方案和挤压参数,主要内容如下:(1)根据零件的结构特点设计了三种挤压方案,对模拟结果进行了比较分析,发现方案一在挤压中期存在折叠挤压缺陷,严重影响零件的性能,对此缺陷产生的原因进行分析,并重新设计方案,使方案二和方案三巧妙的避免此缺陷的产生。在成形良好的情况下,方案三的最大载荷要低于方案二,并且方案二挤压过程花费的时间较长,还需要更换冲头,影响挤压效率。(2)对不同圆角半径坯料的成形过程进行模拟分析,发现不同坯料圆角半径对成形结果有着较大的影响,当坯料圆角半径较小时,在挤压过程中会出现折叠缺陷,随着坯料圆角半径的增大,挤压件成形情况越好;对不同工艺参数进行模拟分析,发现挤压速度越小,变形抗力越低,所需挤压力也就越小,温升效应和应力集中现象就越不明显;挤压温度对挤压力和等效应力也有较大影响,但对挤压后温升和温差影响较小,故在保证性能的前提下选用较高的温度来挤压零件;摩擦系数越低,等效应变和所需要的挤压力越低,可获得较好的表面质量以及降低对设备的要求。(3)对模具应力进行了分析,上下模所受应力均较小;随后对模具磨损进行了分析,发现下模最大磨损深度要远高于上模,且下模磨损不均匀,下模支座小模块的磨损最为严重。对模具设置不同的初始硬度研究其对模具磨损的影响,发现提高模具初始硬度能有效改善模具磨损情况。设计好模具结构后,对零件试制得到了充型饱满,形状尺寸符合预期效果的挤压件。
其他文献
癌症是威胁人类生命中最严重的疾病之一。阻断程序性细胞死亡蛋白1(PD-1)和程序性死亡配体1(PD-L1)途径是近年来抑制癌细胞的重大创新之一,但只有少数抑制剂能够阻断。(2-甲基-3-联苯)甲醇(MBPM)衍生物就是其中之一。首先,建立了20个(2-甲基-3-联苯)甲醇(MBPM)衍生物作为程序性死亡配体-1(PD-L1)抑制剂的定量构效关系。采用密度泛函理论(DFT)在B3LPY/6-31+G
石墨烯是一种优良的二维纳米材料,具有优异的力学性能,广泛用作纳米功能梯度材料的填料。在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域石墨烯功能梯度复合材料(FG-GRC)展现出了优良性能,具有极为广阔的应用前景。本文采用无网格kp-Ritz方法研究了FG-GRC层合板的振动特性和热屈曲。基于一阶剪切变形理论和哈密顿原理,推导了振动和热屈曲方程,并通过无网格方法获得离散的控制方程
为了保持纳米Al的高活性、调控纳米铝热剂的反应性能,本文首先通过在高活性纳米Al表面包覆聚多巴胺(PDA)作为保护层,然后在有机溶剂环境下利用“溶剂热法”二次生长组装构建了两种新型核壳结构Al@PDA@MOFs纳米铝热剂。通过XRD、FTIR、SEM、TEM、EDS、DSC等表征方法对其形貌结构、反应性能和生长机理开展了研究;最后选取形貌和反应性能优异的核壳结构Al@PDA@Cu(NTZ)(N3)
目前,对于镁合金剧烈塑性变形的主要方法之一——等径角变形(ECAP)已经有了很多研究,这些研究主要是通过多道次的挤压来累积应变,从而达到细化晶粒和改善力学性能的目的。由于镁合金剧烈塑性变形的应变量较大,在室温下难以进行,通常需要在200℃以上的温度下才能完成变形,并且需要进行多道次变形才能达到显著的效果,导致在工程领域很难实现它的经济性应用。因此,如何缩短ECAP的工艺流程并提高镁合金的力学性能以
Fast Tool Servo(FTS)systems in ultra-precision diamond turning is a promising and competent technology for fabricating optical freeform surfaces or micro-structured surfaces with sub-micrometric accur
微型铜管(通常指内径尺寸小于2mm且壁厚不足350μm的管材)本身优异的导热和导电能力,决定了它在电子学、热学方面所表现出良好的功能特性,使之有望应用于微型天线、太赫兹频率波导以及微系统中的热交换器。然而,无论是从技术角度还是从制造成本来看,微型铜管都无法像常规尺寸管材那样进行规模化生产。本文基于电铸成型技术,提出了一种基于ABS塑料芯模的微型铜管电铸制备方法;搭建了微型铜管电铸成型实验装置,探索
剪切带的形成与传播对金属玻璃的力学性能影响巨大,是决定屈服强度与塑性的关键因素。目前,一个亟待解决的难题就是塑性变形能力的提升,这就需要研究金属玻璃塑性变形行为,揭示塑性变形过程中的结构变化,探索提高金属玻璃塑性的方法。本课题以块体金属玻璃为主要研究对象,围绕块体金属玻璃塑性变形,基于金属玻璃室温塑性变形及其结构的非均匀性,通过实验归纳、理论分析、微观结构表征与分析等手段,分别从热力学角度、微观结
磁制冷技术与传统的气体压缩制冷相比,具有节能高效、环境友好、运行可靠等特点,因此引起人们广泛的关注。磁制冷工质的选择关乎着磁制冷技术的使用温度范围和制冷能力,因此,寻找合适的工质成为磁制冷发展需要解决的首要问题。由于非晶合金具有可调节的磁相变温度,小的热滞损耗,高的电阻率等特点被广泛研究应用于磁制冷,稀土基非晶合金因为其具有较可观的磁热效应而尤为突出。以此为背景,本文系统的研究了不同元素掺杂对Gd
本课题基于双丝CMT共熔池工艺,采用ER50-6低碳钢、ER316L不锈钢和自制HNS高氮钢三种丝材,进行了调整异质双丝送丝速度比例增材制造高强合金钢构件的研究。研究选取了“低碳钢+不锈钢”和“不锈钢+高氮钢”二种异种丝材增材制造模式,得到了二种模式下异质双丝成分比例变化对增材构件元素成分的构成、显微组织的演化和力学性能变化的影响规律,实现了通过改变异种双丝CMT增材丝材比例而低成本得到高强韧性合
在囊泡运输和细胞分裂等一系列生命活动中,驱动蛋白通过构型变换将化学能转换成机械能,产生与微管轨道的相对运动。微管和驱动蛋白间的力学调控错误,会导致驱动蛋白的脱离和微管的塌陷,甚至造成细胞增殖失败、癌变或死亡。大量对驱动蛋白运输行为的实验观测及对微管屈曲、振动的研究表明,微管-驱动蛋白输运系统具有复杂的分子结构和精细的运动机制。研究微管-驱动蛋白输运系统的行走动力学行为,有助于明确微管与驱动蛋白间相