【摘 要】
:
目前,对于镁合金剧烈塑性变形的主要方法之一——等径角变形(ECAP)已经有了很多研究,这些研究主要是通过多道次的挤压来累积应变,从而达到细化晶粒和改善力学性能的目的。由于镁合金剧烈塑性变形的应变量较大,在室温下难以进行,通常需要在200℃以上的温度下才能完成变形,并且需要进行多道次变形才能达到显著的效果,导致在工程领域很难实现它的经济性应用。因此,如何缩短ECAP的工艺流程并提高镁合金的力学性能以
论文部分内容阅读
目前,对于镁合金剧烈塑性变形的主要方法之一——等径角变形(ECAP)已经有了很多研究,这些研究主要是通过多道次的挤压来累积应变,从而达到细化晶粒和改善力学性能的目的。由于镁合金剧烈塑性变形的应变量较大,在室温下难以进行,通常需要在200℃以上的温度下才能完成变形,并且需要进行多道次变形才能达到显著的效果,导致在工程领域很难实现它的经济性应用。因此,如何缩短ECAP的工艺流程并提高镁合金的力学性能以满足工程领域的要求成为急需解决的问题。V形弯曲是板料成形加工中的常见工艺,轧制镁合金所具有的强烈基面织构使其在室温下的V形弯曲变形性能较差,而对于如何提高镁合金的室温V形弯曲成形能力,目前相关的研究还比较少。本文通过预压缩变形与剧烈塑性变形ECAP相结合的方法,研究了预置孪晶对ECAP加工后力学性能和弯曲变形性能的影响,并对微观组织进行了分析,得到的主要结论如下:(1)对AZ31镁合金轧板的横向(TD)方向进行了应变量为8%的平面应变压缩,并在200℃下退火以消除内应力,结果表明预压缩退火试样(RPCA)的拉伸屈服强度和抗拉强度分别为140.8MPa和272.5MPa,比原始轧板分别提高了55%和12%,显微硬度平均值为65.9HV,比原始轧板提高了16%;RPCA试样中由于预压缩变形产生{1012}拉伸孪晶,使绝大部分晶粒发生86°转动形成新的取向(c轴∥TD)。(2)预压缩8%后在250℃下进行ECAP(RPCEA),变形后RPCEA试样的最大断裂延伸率达到35.7%,比原始轧板提高了76%,与轧板直接进行ECAP后的试样(REA)相比,RPCEA试样各部分力学性能都有提高,基面滑移的施密特因子相比于轧板有明显提高。(3)对不同状态试样进行V形弯曲实验,发现预压缩退火试样(RPCA)的极限弯曲深度相比于原始轧板提高了39%,最大弯曲力提高了20%,而预压缩后ECAP试样(RPCEA)的极限弯曲深度提高了54%;通过金相和EBSD分析发现RPCA试样弯曲内侧的主要变形机制是{1012}拉伸孪生,外侧主要发生去孪生,RPCEA试样弯曲内侧和外侧的主要变形机制均为{1012}拉伸孪生和基面滑移。
其他文献
乳化炸药是一种乳胶状的油包水型含水工业炸药,具有抗水性优良、爆炸性能好、机械感度低等优点。目前,被广泛应用于矿山开采、道路施工等国民经济建设中。敏化是乳化炸药生产工艺中的重要步骤,能够影响到炸药爆轰性能和储存稳定性。为了探究乳化炸药敏化的后效问题,本文选取乳化炸药中常用的亚硝酸钠发泡剂和三种自制发泡剂作为研究对象。首先分别探究了几种发泡剂在不同温度下的反应动力学。改变反应物的浓度和反应的温度以及反
呋咱类含能材料是应用较广泛的高能量密度材料之一。以双氧水为氧化剂在有机溶剂中将3,4-二氨基呋咱(DAF)氧化为3-氨基-4-亚硝基呋咱(ANSF)是合成许多呋咱类含能材料的第一步。目前国内外学者对呋咱类含能材料的研究主要聚焦于材料本身的爆轰性能及热稳定性研究,对合成过程中的热风险关注较少。而双氧水参与的氧化反应一般潜在危险性较大且DAF氧化反应过程中物料危险性较高。因此,研究双氧水氧化DAF合成
近年来,炸药高能量与安全性协同发展逐渐成为弹药领域的研究热点。本文选择不同粒径铝粉和不同含量助燃剂制备两种体系的奥克托今(HMX)基温压炸药,采用理论分析、数值模拟和试验测试相结合的方法,对温压炸药的安全性和密闭空间内释能规律开展了研究。主要研究工作及成果如下:首先,采用差式扫描量热仪(DSC)和摩擦感度仪,研究铝粉粒径与助燃剂含量、种类对HMX基温压炸药的安全性的影响。结果表明:随着铝粉粒径增加
在近几年含能化合物的发展中,人们在追求高的爆热、密度和生成焓的同时也在寻求兼具低感度的化合物,其中氮杂稠环结构致密,分解温度较高,能量密度也比较高,是新型含能材料中备受人们欢迎和认可的一类化合物。与此同时含氮量也是含能化合物性能追求的一个重要的基点,由于高氮化合物生成焓高,分解产物主要为水和N2,具有含能材料追求的良好特性。本论文通过优化分子结构,设计并合成了一类基于吡嗪并噁二唑,和一类s-四嗪联
机械装备部件失效的三大主要原因是磨损、腐蚀和断裂,其中大约80%机械零件的失效由磨损造成。作为各类机械设备主要的润滑介质,传统润滑油在比较苛刻的工况环境表现出的局限性不容忽视。新型润滑油添加剂的研发受到科研人员的广泛关注,特别是磨损自修复型添加剂的研究为节约材料和能源消耗提供了一个途径。添加剂材料的分散稳定性极大影响油品的性质,所以对于能够在润滑油中能够稳定分散的磨损自修复型添加剂的研究具有极为重
热电材料是一种有望解决能源问题的新型能源材料,能够实现热能与电能的直接相互转化,在发电和制冷方面都有着独特的应用优势。自单晶SnSe实现了在b轴方向上ZT=2.6的超高热电性能后,SnSe就受到了广泛的关注。为了实现大范围应用,多晶SnSe性能的优化研究成为了研究重点。本文针对多晶SnSe热电性能较差的问题,设计了一种在水热合成过程中引入磁场,通过磁场的特性来调控多晶SnSe的微观结构最终实现性能
癌症是威胁人类生命中最严重的疾病之一。阻断程序性细胞死亡蛋白1(PD-1)和程序性死亡配体1(PD-L1)途径是近年来抑制癌细胞的重大创新之一,但只有少数抑制剂能够阻断。(2-甲基-3-联苯)甲醇(MBPM)衍生物就是其中之一。首先,建立了20个(2-甲基-3-联苯)甲醇(MBPM)衍生物作为程序性死亡配体-1(PD-L1)抑制剂的定量构效关系。采用密度泛函理论(DFT)在B3LPY/6-31+G
石墨烯是一种优良的二维纳米材料,具有优异的力学性能,广泛用作纳米功能梯度材料的填料。在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域石墨烯功能梯度复合材料(FG-GRC)展现出了优良性能,具有极为广阔的应用前景。本文采用无网格kp-Ritz方法研究了FG-GRC层合板的振动特性和热屈曲。基于一阶剪切变形理论和哈密顿原理,推导了振动和热屈曲方程,并通过无网格方法获得离散的控制方程
为了保持纳米Al的高活性、调控纳米铝热剂的反应性能,本文首先通过在高活性纳米Al表面包覆聚多巴胺(PDA)作为保护层,然后在有机溶剂环境下利用“溶剂热法”二次生长组装构建了两种新型核壳结构Al@PDA@MOFs纳米铝热剂。通过XRD、FTIR、SEM、TEM、EDS、DSC等表征方法对其形貌结构、反应性能和生长机理开展了研究;最后选取形貌和反应性能优异的核壳结构Al@PDA@Cu(NTZ)(N3)