论文部分内容阅读
氟基、氯基等电负性等离子体广泛运用于刻蚀加工领域,但是电负性等离子体电子密度的测量用传统方法比较繁杂。本文主要研究了利用微波共振探针对电负性容性耦合等离子体电子密度的诊断,并研究了容性耦合等离子体在材料表面处理中的应用。 首先,将微波共振探针在Ar等离子体中的测量结果与朗缪尔探针结果进行对比,确定微波共振探针精确测量的实用范围;利用微波共振对电负性容性耦合等离子体进行测量诊断。在SF6、Cl2、O2与Ar的混合气体放电的电负性等离子体中,当强电负性气体(SF6、Cl2)加入Ar等离子体时电子密度急剧下降,随着强电负性气体流量增加电子密度缓慢下降,弱电负性气体(O2)加入Ar等离子体后,随着O2流量增加电子密度几乎呈线性下降;随着入射功率的增加,电负性等离子体的电子密度不断增加;随着气压的增加,电负性等离子体的电子密度缓慢下降。在双频容性耦合NF3等离子体中,上下电极的高频和低频射频功率变化对电子密度和光谱强度都有影响,但是起主要作用的是上电极高频功率,下电极低频输入功率和射频源频率的影响不是很大;随着气压的增大等离子体电子密度不断减小,而其各谱线强度不断增加;向NF3等离子体中通入O2,随着O2流量的增加电子密度呈下降趋势。 其次,利用双频容性耦合等离子体对锂电池片剖面进行处理,去除电池片在切割过程中形成的毛刺和粉尘;对聚对苯二甲酸乙二醇酯(PET)材料表面进行处理改变其表面浸润性。结果表明:利用40.68/13.56MHz双频容性耦合激发的SF6/Ar等离子体处理锂电池片剖面后,剖面上大部分的毛刺以及粉尘都能被处理掉,但是还有一些毛刺残余;利用40.68MHz或者13.56MHz单频容性耦合激发O2等离子体处理PET材料表面,都能使其表现出良好的亲水性,将O2等离子体处理后具有亲水性PET材料分别使用C4F8等离子体氟化和使用全氟癸基三氯硅烷(C10H4Cl3F17Si)药品进行全氟化,原亲水性材料都能转变成疏水性,通过静态水滴接触角测量克制疏水性的接触角最大值达到为140°。