基于深度学习的植物病害识别模型研究与实现

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:yangjianwu2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
植物病害的自动识别对我国农业发展十分重要,快速高效的识别方法可以大大减少植物病害对农业从业者造成的经济损失。针对植物病害图像识别问题,利用深度学习网络可以以端到端的方式学习,从而获得更好的识别效果和更高的识别效率。本文以深度学习方法为基础,引入动态领域自适应方法来解决植物病害图像识别任务中样本数据量少的问题,引入基于Transformer的细粒度识别方法来解决同类植物不同病害之间难以识别的问题。本文主要做了以下三个方面的工作:首先,现实中植物病害识别任务提供的数据多为无标签数据或部分有标签数据,这为深度网络的学习带来了困难。借助迁移学习的方法可以将从源域数据中学习到的知识迁移到目标任务的学习中,以缓解目标任务中有标签数据不足的问题。为了在迁移过程中减小源域和目标域间的图像数据差异,本文提出基于深度动态联合自适应网络的植物病害识别方法。该方法对网络进行训练时,首先在多层网络结构中利用域间动态联合自适应分析了边缘分布与条件分布的相对重要性,完成针对性的数据分布自适应,然后利用熵最小化原则使学习的目标分类器穿过目标域的低密度区域。经过实验验证该方法提高了植物病害识别任务中对目标域图像的识别精度。其次,同类植物的不同病害分类任务属于细粒度识别任务,具有类内差异高、类间差异低的特点,比一般的识别任务更具挑战性。为了更好地获得图像的细粒度表示特征,本文提出了基于双线性Transformer交互网络的植物病害细粒度识别方法。该方法首先利用Transformer网络结构提取特征,并在特征提取时根据网络权重挑选出更能表示图像关键信息的特征,其次对挑选出来的特征进行自交互从而增强特征的表示能力,然后为了更好地判断图像之间的差异,基于同类图像利用双线性结构完成对比交互,最后将增强过的特征进行融合,并将融合后的特征输入分类器完成分类。经过实验验证该方法提高了植物病害和鸟类细粒度识别任务的准确率。最后,本文针对植物病害识别任务,综合以上提出的两种植物病害识别方法设计并实现了植物病害识别原型系统。该系统可以将本地图像上传到网页端,并且做出准确的识别,同时还有同类病害图像展示和用户反馈的功能。
其他文献
随着5G(5th Generation Mobile Communication Technology)通信和集成电路的飞速发展,人工智能产业爆发,AI(Artificial Intelligence)芯片是未来万物互连和各种智能应用落地的物理基础。AI芯片最重要的是算力和功耗,在摩尔定律几乎走向物理极限的情况,AI芯片的算力提升和功耗降低越来越依赖于具有3D(Three-dimensional)
无人机技术的迅速发展和机载电脑处理能力的快速提升,为无人机目标追踪技术提供了广阔的应用前景。在无人机目标追踪技术的真实应用场景中,很容易因为目标的高速移动或者相机视野的短暂丢失而导致目标追踪飞行任务执行失败,进而导致无人机难以控制甚至引发危险。因此,研究一套硬件和软件稳定性强的目标追踪系统对于无人机应用具有重要意义。所以本文从硬件、软件以及算法这三个角度去设计一套完整的无人机目标追踪系统,本文的主
量子通信基于量子力学的基本原理保护信息安全,在理论上拥有无条件的安全性,近年来引起了广泛的关注,正在逐步走向工程实用化。量子通信主要包括量子密钥分发、量子安全直接通信(QSDC)、量子秘密共享、量子隐形传态(Teleportation)、量子密集编码等;其中前三者被统称为量子保密通信或者量子密码学。量子纠缠作为量子力学的特性之一,在量子保密通信领域有着众多的研究和广泛的应用。本文的主要内容是基于纠
近些年以来,红外小目标检测任务受到非常多的关注,在海上监控和预警系统当中的应用较为广泛。传统的红外图像小目标检测方法非常依赖手工特征的设置,导致模型不稳定,难以适应场景的变化;而使用深度学习直接检测的方式也因为尺度问题很难检测到真正的小目标。为了更好地实现对红外小目标图像的检测,本文提出了一个基于纹理增强的红外小目标分割检测网络GSTD-Net,并在其基础上构建了一个强弱监督联合的网络损失函数,具
由于自然灾害种类的多样性和突发地点的不确定性,应急通信系统需要满足多种复杂环境下的信号覆盖和大带宽的需求,同时体积小、易于部署。软件无线电技术的思想是采用通用硬件来设计通信系统,在基带端使用软件的灵活处理来兼容多种信号的制式,以此缩小通信系统的整体尺寸,具有灵活性高、便携的优势。本文采用软件无线电架构来设计多天线数字波束赋形电路将充分发挥数字波束赋形在信号覆盖、提升带宽等方面具有明显的潜力,同时又
颗粒间的胶结物可以显著改变颗粒料的力学行为,提高颗粒料的力学性能。水泥基胶凝材料在颗粒堆积体中流动附着形成的胶结结构对胶结颗粒料的力学特性起着决定性作用,胶凝流体在颗粒堆积体中的附着行为与流变参数密切相关。本论文首先通过流动附着试验分析了浆体附着量随浆体流变性能的变化规律,其次通过CT扫描技术分析了浆体附着结构与浆体附着量之间的对应关系,最后通过理论分析推导了胶结颗粒料强度与浆体附着量的理论模型,
【目的】急性肾损伤(acute kidney injury,AKI)发病率高,并且增加慢性肾脏病(chronic kidney disease,CKD)和终末期肾脏病发病风险,造成巨大社会负担。如何防止急性肾损伤向慢性肾脏病转化是亟需解决的问题。核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain[NOD]-like recepto
逐次逼近式(Successive Approximation Register,SAR)模数转换器(Analog to Digital Converter,ADC)具有功耗低、面积小、结构简单等优点,因此被广泛应用于医疗可穿戴设备、航空航天和工业测量等对ADC采样率要求不高的领域。而近些年来,由于工艺技术的改进和设计能力的提升,使得SAR ADC成为高速ADC中的研究热点。本文对中等精度的高速SA
目的:组织工程气管为长段气管重建提供了良好的修复材料,极大程度改善了长段气管缺损(或狭窄)患者的预后,提高了术后生活质量。但目前基于静电纺丝和间充质干细胞的组织工程气管存在诸多问题,构建过程耗时长,常用的含有TGF-β3的软骨诱导体系效率低,所得软骨细胞表型不稳定。在本研究中我们将小分子化合物Karotogenin(KGN)预处理与TGF-β3常规诱导进行结合,以提高间充质干细胞成软骨分化的效率,
Wnt/β-catenin信号通路在控制细胞的增殖、分化和生存中都发挥着重要作用。β-catenin作为传递该信号的核心分子,其蛋白稳定性受到精密调控。一旦Wnt/β-catenin信号通路的成员发生基因突变导致调控紊乱,过量的β-catenin就会累积,最终促进细胞恶性增殖。许多癌症,尤其是结肠癌,已经被证明是由于过度激活的Wnt/β-catenin信号导致的。因此,通过特异性降解β-caten