小麦禾谷孢囊线虫细胞壁扩展蛋白和钙网蛋白的鉴定及功能研究

来源 :中国农业大学 | 被引量 : 0次 | 上传用户:wqc851109
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
小麦禾谷孢囊线虫(Heterodera avenae)是一种重要的作物寄生线虫,在全世界各小麦产区均有分布,侵染小麦、大麦、燕麦等禾谷类作物,严重威胁我国的粮食安全。小麦禾谷孢囊线虫是一种固着性内寄生线虫,在寄生过程中与寄主建立了复杂的互作关系。一般认为,孢囊线虫的效应蛋白在食道腺内合成后,通过口针分泌到植物组织内发挥作用。为了解小麦禾谷孢囊线虫效应蛋白在寄生寄主过程中的具体功能,本研究从小麦禾谷孢囊线虫中克隆了46个候选效应蛋白基因,利用烟草(Nicotiana benthamiana)瞬时表达系统进行筛选,并对选定的效应蛋白进行进一步的研究。本研究从小麦禾谷孢囊线虫的转录组数据中选取了 46个预测的含有信号肽且无跨膜结构域的效应蛋白作为候选基因。利用烟草瞬时表达候选效应蛋白,发现效应蛋白HaEXPB2,可以在烟草叶片引起细胞死亡。HaEXPB2开放阅读框全长为870 bp,编码的细胞壁扩展蛋白含有289个氨基酸,与Ha-EXPB1同源性达到89%,含有信号肽,具有纤维素结合域(CBMⅡ)和expansin结构域。随后对HaEXPB2的功能进行深入研究,原位杂交显示HaEXPB2在二龄幼虫的食道腺合成,不同龄期的发育表达模式研究发现HaEXPB2在各龄期均有表达,但在侵染后二龄幼虫表达量最高。在植物的亚细胞定位中,HaEXPB2定位于细胞壁。原核表达的HaEXPB2融合蛋白,经检测发现具有纤维素结合特性,结果显示HaEXPB2是通过CBMII结构域与纤维素底物结合。利用体外RNAi技术沉默J2幼虫的HaEXPB2后接种小麦,与对照组相比,二龄幼虫的侵染率下降了 53%。以上结果表明,HaEXPB2是小麦禾谷孢囊线虫分泌到寄主内,通过作用于细胞壁促进寄生的效应蛋白,在线虫侵染前期发挥重要作用。同时研究发现HaEXPB2的同源基因Ha-EXPB1同样可以引起烟草叶片细胞死亡,而且定位于细胞壁,因此我们推测细胞壁扩展蛋白家族在在小麦禾谷孢囊线虫寄生过程中功能相似。HaEXPB2是首次发现作用于细胞壁的线虫效应蛋白,为理解植物寄生线虫与寄主的互作提供了新的切入点。在本研究中我们鉴定了效应蛋白基因HaCRT1,编码钙网蛋白,在烟草叶片中表达后可以抑制Bax引起的细胞死亡。将HaCRT1融合到红色荧光蛋白在烟草中表达,亚细胞定位显示HaCRT1 定位于植物细胞内质网。超表达HaCRT1的拟南芥对丁香假单胞菌(Pseudomonas syringae)的敏感性增强。为了研究HaCRT1抑制Bax引起的细胞死亡所依赖的信号通路,构建了酵母表达体系进行研究。以上两个效应蛋白的研究结果为了解小麦禾谷孢囊线虫与寄主的互作机制提供了证据,为制定线虫防治策略保护粮食安全提供了思路。
其他文献
卵泡是位于卵巢皮质,由卵泡膜细胞、颗粒细胞等包裹卵母细胞形成的特殊结构,在卵母细胞正常发育过程中具有支持和保护的重要作用。根据卵泡的形态和结构特征,从原始卵泡到成熟卵泡的整个卵泡发育阶段,卵泡又可以分为腔前卵泡和有腔卵泡。此前的大量研究主要集中在有腔卵泡,并已证实发育动态主要受到促性腺激素FSH和LH的调控。然而,对于腔前卵泡发育的相关研究非常有限,目前比较明确的是其对于促性腺激素的依赖程度很低。
绵羊是世界农业经济的重要组成部分。中国大陆从1961年的前三名生产者急剧上升并成为2014年的第一名。营养干预的早期实施可以通过改变肠道微生物群的发育分布来影响反刍动物的成体健康和生产性能,包括羊在内。我们描绘了各种饮食对瘤胃微生物群落开发IlluminaMiSeq平台的影响。将12只1周龄的羔羊分成如下四组:母乳喂养的羔羊只乳喂,不给其定量(第1组);集中喂养的羔羊(第2组);草喂养的羔羊(第3
自然界中,植物对大多数病原微生物表现出免疫,其中一个原因是植物细胞表面的模式识别受体能够识别微生物相关的分子模式,从而触发植物的先天免疫反应,被称为微生物相关分子模式触发的免疫。植物还能产生由病原效应因子触发的第二层次免疫反应。水稻是世界上的主要粮食作物之一。在生产过程中,水稻遭受到多种病原菌的侵染,造成减产甚至绝收。培育抗病性水稻是控制水稻病害最为有效的策略之一。效应因子触发的水稻抗性具有抗谱范
畜禽重要经济性状改良是动物育种工作的主要目标。其中蛋清和蛋壳质量在家禽生产中至关重要。本研究开展了鸡蛋清扩散面积的遗传变异分析和蛋壳基质蛋白Ovocleidin-17(OC-17)与碳酸钙作用机制的研究,以期为蛋清和蛋壳质量的改良提供新的思路。利用两个世代共786只白来航纯系蛋鸡,共收集2395枚鸡蛋,测量了鸡蛋全部内容物扩散面积(TECA)、外稀蛋白扩散面积(OTAA)、内浓蛋白扩散面积(ITA
大多数植物病毒都不能侵染植物的顶端分生组织,因此,利用茎尖离体培养获得无毒植株的技术已经广泛应用在实际生产中。随着RNA沉默机制的深入研究,越来越多的人认为抗病毒RNA沉默是植物茎尖脱毒的主要原因。而一些病毒编码的RNA沉默抑制子能帮助病毒短暂地侵染茎尖,然后,这些病毒又从茎尖组织中被清除,其中的分子机制目前尚不清楚。黄瓜花叶病毒(Cucumber mosaic virus,CMV)能侵染1,20
磷是植物生长发育必需大量元素之一。大部分土壤溶液中可被植物直接吸收利用的磷的浓度-般低于10微摩尔,因此生长在自然环境中的植物和耕地栽培的农作物经常遭受低磷胁迫。低磷胁迫时,植物许多基因的表达发生明显改变,暗示转录因子在植物响应低磷胁迫过程中发挥重要作用。已有研究结果显示,拟南芥转录因子HSF家族成员在拟南芥的生长发育以及应对逆境胁迫中发挥作用,但是否HSF家族成员参与植物响应低磷胁迫的基因转录调
昆虫是自然界中最庞大的生物类群,已经进化出复杂的嗅觉器官来接收来自周围的各种化学刺激,这种强大的能力使他们能够检测和辨别成千上万种气味分子,从而准确地寻找寄主、配偶、产卵地及躲避天敌等。很多证据表明不同的嗅觉器官起着不同的嗅觉功能。对大多数昆虫来说,触角和口器触须是最重要的两个嗅觉器官,目前对昆虫化学感受的研究大多集中于触角气味分子受体的鉴定及相关功能的研究,对口器触须的嗅觉功能的研究极少。飞蝗作
稻生黄单胞菌条斑致病变种(Xanthomonasoryzaepv.oryzicola,Xoc)引起的细菌性条斑病是水稻上最重要的细菌病害之一。然而,对于该病原如何克服水稻免疫系统成功侵染水稻的致病机制知之甚少。本研究建立了分析水稻在病原相关分子模式(Pathogen-associated Molecular Patterns,PAMPs)诱导下免疫反应的检测技术;在此基础上,探究了黄单胞菌如何逃避
显花植物的雌雄配子体,也叫胚囊和花粉,分别含有雌配子卵细胞和雄配子精细胞。它们分别产生于雌蕊的胚珠和雄蕊的花药中。在植物开花时,成熟的花粉被传递到雌蕊的柱头上,经识别后萌发出管状的花粉管,花粉管侵入柱头,并在雌蕊组织中极性生长,最终进入胚珠的胚囊中,并释放其携带的两个精细胞进行双受精。花粉管在雌蕊中的极性生长是把精细胞传送到雌配子体中完成受精所必需的,是植物有性生殖的重要步骤。维持花粉管在雌蕊中的
稻瘟病菌Pyricularia oryzae是研究植物与病原真菌相互作用的模式病原真菌,由其引发的稻瘟病是世界范围内最严重的水稻病害之一。已有一些报道表明蛋白磷酸化参与调控了稻瘟病菌的致病性、菌丝生长、分生孢子形成和胁迫应答等多个生物过程。但是,由于缺少磷酸化蛋白组学研究,蛋白磷酸化介导的调控网络及其节点仍然不清楚。在本研究中,作者首先在野生型菌株P131的菌丝阶段鉴定了 799个磷酸化蛋白及其1