量子等离子体中波的传播特性

来源 :上海大学 | 被引量 : 1次 | 上传用户:lcl427hjc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用半经典、非相对论量子、相对论量子三种理论模型来研究量子等离子体(特别是高能量致密等离子体)中电磁波、电子等离子体波的传播特性以及强激光脉冲与等离子体之间的相互作用(激光尾场加速)。论文分为四个部分:第一部分,分别利用半经典和非相对论量子两种动理学模型来研究电磁波和电子等离子体波在非相对论量子等离子体中的传播特性。第二部分,利用基于协变Wigner函数方法的相对论量子动理学模型研究电磁波和电子等离子体波在高能量致密等离子体(强激光束产生)中的传播特性。第三部分,利用相对论量子流体力学模型研究强激光和等离子体之间的相互作用,考察相对论量子效应对激光尾场加速这一物理过程的影响。第四部分,利用光与运动介质相互作用的有效度规理论来研究脉冲星表面超强磁场诱导的QED真空极化效应和等离子体层的动力学效应对X-射线暴传播的影响,并且修正X-射线暴谱线的引力红移。本文主要创新性研究成果归纳如下:(1)率先在相对论量子力学框架下研究强激光脉冲与等离子体之间的相互作用。研究相对论效应(超强激光脉冲所致)和量子效应(致密等离子体所致)对激光尾场加速这一高能量、高密度等离子体过程的影响。从相对论量子流体动力学方程出发,推导出含有相对论量子修正项的激光尾场电子数密度扰动和加速场所满足的方程。通过与经典结果的比较,发现量子效应削弱了激光尾场。在适当的等离子体参数下,量子效应能到达可观测的数量级。(2)率先研究高能量致密等离子体(强激光束所致)中电子等离子体波的Landau阻尼。在强激光束产生的高能量致密等离子体,电子的简并使得我们必须考虑Fermi统计压力和Bohm势;由于强激光脉冲的作用,电子是相对论性。因此研究波在高能量致密等离子体中的传播时,必须考虑相对论量子效应。利用基于协变Wigner函数方法的相对论量子动理学模型,我们得到了电子等离子体波在高能量致密等离子体中传播的色散关系以及Landau阻尼。(3)利用有效度规理论将脉冲星表面产生的X-射线暴与脉冲星表面磁化等离子层之间的电磁相互作用几何化,率先研究由脉冲星表面超强磁场诱导的QED真空极化效应和等离子体层的动力学效应对X-射线暴引力红移量的修正。研究表明脉冲星表面超强磁场诱导的QED真空极化效应和等离子体层的动力学效应使X-射线暴谱线产生红移,且与辐射的偏振状态无关,也无色散。在适当的脉冲星参数下,这种红移修正可以达到引力红移相当的数量级。因此当测量脉冲星辐射的引力红移作为洞察致密物质的质量与半径比以及物态方程的探针时,必须要把由脉冲星表面磁化等离子体层所产生的红移和引力红移区分开来。
其他文献
近年来人们对高温超导体中涡旋态性质的研究一直抱有很大的兴趣。由于高温超导体的母体化合物是反铁磁Mott绝缘体,所以考虑到自旋磁性与超导电性的相互竞争,新奇的涡旋态性质倍受期待。和正常金属超导体不同,欠掺杂或稍过掺杂高温超导体传导电子之间相干长度非常短,和相干长度相关的Thomas-Fermi屏蔽效应明显减弱。从而欠掺杂或稍过掺杂高温超导体中长程库仑势就变得比较重要。长程库仑势的引入可能会带来一些新
复杂网络科学作为一门新兴学科,为研究复杂系统的结构与功能提供了有力的分析与建模工具。本篇论文主要研究复杂网络上的两类重要动力学过程即同步和疾病传播相关的一些问题。具体工作如下:第二章首先研究了具有多种连接模式的时滞网络中的同步问题,重点研究了时滞和网络结构对同步的影响。对于连接方式相同的情况,我们给出了有效的渐近同步判定定理;对于不相同的情况,我们给出了当时滞比较小时判定同步的一个充分条件。对于一
20世纪的分子生物学经历了从宏观到微观的发展过程,由形态、表型的描述逐步分解、细化到生物体的各种分子水平功能的研究。系统生物学是在细胞、组织、器官和生物体整体水平研究结构和功能各异的各种生物分子及其相互作用,并通过理论和计算来定量描述和预测生物功能、表型和行为。系统生物学研究是一个逐步整合的过程,常把它称为21世纪的生物学生物体在系统内部的个体相互作用以及系统外部的环境变化的双重影响下,整体上会涌
本学位论文的研究内容属于凸几何分析理论,其中Brunn-Minkowski理论是该理论的核心内容.本文致力于Lp Brunn-Minkowski中极值问题的研究,牵涉到Lp Blaschke加、最佳仿射Sobolev范数、复截面问题.本论文的研究工作可以分为三个方面:(1)我们提出了关于多胞形的Lp Blaschke加的概念(1
本文主要就具有某些特殊性的可积模型构造其无穷对称及Lie代数结构,而在若干环节中应用对称的变换理论.这些模型和它们的特点是:·广义Manakov方程和Sasa-Satsuma方程:它们在非线性光学中具有重要应用,但是都对应于三阶谱问题,与常见的两阶矩阵谱问题不同.·变系数KdV方程:系数为t的函数,在Painleve可积的条件下,与KdV方程之间存在规范变换.·Toda链:当|n|—∞时,两位势中
向量优化是优化理论的一个重要分支,集值优化又是向量优化的重要组成部分,它在数学规划、非光滑分析、数理经济、工程学、管理科学等许多领域有着非常广泛的应用。近来,它引起了许多学者的兴趣。我们注意到,在研究优化问题时,序锥的拓扑内部是一个非常重要的概念,但当序锥的拓扑内部为空时,我们如何建立最优性条件呢?我们也注意到,在优化问题的最优性条件中,凸性扮演着非常重要的角色,然而,我们发现一些优化问题并不满足
本文主要研究二维等温拟定常Euler方程两类Goursat问题和两类变分波方程cauchy问题第二章考虑了一般的2×2拟线性严格双曲方程组和二维等温拟定常Euler方程的特征分解我们对一般的2×2拟线性严格双曲方程组推导了它存在特征分解的一个充分条件利用所得到的特征分解,我们推广了courant和niedrichs([26])对可约方程组的一个著名结论:与常状态相邻的双曲状态是简单波,尽管此时方程
本论文是通过设计和分析全牛顿步不可行内点算法来求解锥规划中的两类问题:线性规划问题和半正定规划问题。针对求解上述两类锥规划问题存在着多种算法,其中内点算法已经被证实为有效算法之一。内点算法根据迭代点的不同分为可行内点算法和不可行内点算法:可行内点算法的初始点和算法产生的迭代点始终严格可行,随着算法的运行,迭代点从可行域内部趋近于问题的最优解;不可行内点算法的初始点和算法产生的迭代点始终不可行,随着
长期以来,通过矩阵的秩来研究矩阵的奇异性以及矩阵方程的解,邋过矩阵的惯性指数来研究矩阵的正定性一直是矩阵代数中的重要课题许多著名的专家学者都致力于这方面的研究,而且获得大最的研究成果.本文从上述角度研究了某线性和非线性厄米特砸阵函数,获得了许多新的有意义的结果,并发现秩与惯性指数也是研究砸阵函数的稳定性和极值等分析问题的重要的工具之一,根据这一结果相应地研究了一些矩阼函数的优化问题这些结果进一步丰
分片等距系统的基本模型源于上世纪八、九十年代一些学者对电子工程中的一些实际问题的研究.后来很多数学学者开始把该类问题视为一维区间交换变换的高维推广,并从纯数学的角度来研究该类映射的动力学性质,试图建立起一般的理论框架.本文主要研究的是分片等距系统的几个基础问题,包括周期点的存在性、无理点的存在性、周期元胞填充的切性,以及动力学复杂度等相关问题.第一章主要介绍了分片等距系统中的一些主要研究问题以及研