基于Bogoliubov-de Gennes理论的高温超导涡旋态相变研究

来源 :上海大学 | 被引量 : 1次 | 上传用户:yejing00
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来人们对高温超导体中涡旋态性质的研究一直抱有很大的兴趣。由于高温超导体的母体化合物是反铁磁Mott绝缘体,所以考虑到自旋磁性与超导电性的相互竞争,新奇的涡旋态性质倍受期待。和正常金属超导体不同,欠掺杂或稍过掺杂高温超导体传导电子之间相干长度非常短,和相干长度相关的Thomas-Fermi屏蔽效应明显减弱。从而欠掺杂或稍过掺杂高温超导体中长程库仑势就变得比较重要。长程库仑势的引入可能会带来一些新奇的现象,可以帮助我们更好的理解近期一些新奇的实验结果。本论文基于Bogoliubov-de Gennes理论,分别研究了引入长程库仑势后对块状高温超导体涡旋电荷符号、涡旋电荷结构相变以及局域态密度的影响。论文主要包括以下几方面内容:(1)在反铁磁序与d波超导电性具有相互竞争作用的有效模型哈密顿量中引入长程库仑势项,对Bogoliubov-de Gennes方程进行数值求解来研究长程库仑势对不同掺杂水平的高温超导体中反铁磁性及涡旋电荷分布的影响。我们的数值结果表明不考虑长程库仑势时,对于稍过掺杂的样品,当反铁磁序强度由弱变强的时候,伴随着涡旋电荷符号从正变成负。对于欠掺杂样品,当我们引入长程库仑势并逐渐增强时,涡旋芯处的反铁磁序受到抑制而逐渐变弱。当长程库仑势足够强时,即使在反铁磁序保持很强的情况下正涡旋电荷也能够被观察到,这很好的解释了核磁共振实验的结果。同时,我们分析认为载荷涡旋可以引起自旋轨道耦合作用,从而高温超导体中也可能会出现分数量子磁通。(2)基于反铁磁序与d波超导电性具有相互竞争作用的有效模型哈密顿量,对Bogoliubov-de Gennes方程进行数值求解来研究体系序参量的改变对欠掺杂高温超导体涡旋电荷结构的影响。首先研究了次最近邻跳跃积分对涡旋结构的影响,计算发现当次最近邻跳跃积分的值比较小的时候,对于不同的次最近邻跳跃积分值,磁场引起的自旋密度波以及电荷密度波会分别沿y和x轴方向出现一维条纹结构。当次最近邻跳跃积分值取一个合适大小的值时,沿y方向和沿x方向分布的条纹结构可以在涡旋格子中共同存在。进一步增大次最近邻跳跃积分的值,反铁磁涡旋芯周围被沿y方向和沿x方向的类似条纹结构所包围,而电荷密度波的空间分布则类似于棋盘结构。然后研究了长程库仑势对涡旋结构的影响,计算发现不考虑长程库仑势时,随着原位排斥势U的增强,自旋密度波、电荷密度波、d波序参量的空间分布会出现二维结构向一维条纹结构的转变。长程库仑势的引入提供了一种排出反铁磁涡旋芯电荷的机制,进而反铁磁序受到屏蔽并被抑制到更靠近涡旋芯的范围内。我们的结果表明,由于长程库仑势的作用,更加倾向于一维条纹结构的欠参杂样品中也可能观察到二维棋盘结构。(3)在反铁磁序与d波超导电性具有相互竞争作用的有效模型哈密顿量中引入长程库仑势项,对Bogoliubov-de Gennes方程进行数值求解来研究长程库仑势对高温超导体局域态密度的影响。由于隧道扫描显微镜实验中测量的局域态密度通常提供的是准粒子的激发态,而电荷密度波展现的是基态电荷密度的空间分布。所以对涡旋芯处的局域态密度进行讨论是非常重要的。我们的结果表明,反铁磁有序增强时,能量范围在费米能级附近的涡旋芯态出现了由具有四重对称性的二维调制结构向一维条纹结构的相变。当考虑长程库仑势后,引起涡旋芯态结构相变的同时,周期由5a0变化为4a0。长程库仑势引起自旋反向电子之间反转的同时,破坏了涡旋态的自旋简并,从而涡旋态局域态密度的两个劈裂峰向费米能级靠近,但是仍然可以区分。我们的结果可以用来解释最近的扫描隧道显微镜实验结果。
其他文献
声波照射到水中目标会产生散射,不同方向的散射波声压分布与入射波性质以及目标的大小、形状、声学参数密切相关。已知入射声波、目标几何形状和周围介质的声学参数,计算散射声场分布特性是声学正问题。求解散射问题可采用解析法或数值法,但仅有少数形状规则的物体可用解析法获得场的精确解。不规则形状以及复杂材料目标的散射声场可用时域有限差分法(finite difference timedomain, FDTD)、
离散Boussinesq型系统以三元的形式可以视为定义在四方格上满足多维相容性的离散可积系统.本文主要利用双线性化方法,研究离散Boussinesq型系统的双线性结构,并给出其Casorati行列式解.本文的结构安排如下:首先我们回顾所有已知的离散的Boussinesq型方程.这些都可视为由Hi-etarinta所分类的离散Boussinesq型方程[A-2],[B-2]和[c-3]方程或其特殊情
半无限规戈(Semi-Infinite Programming,简写为SIP)不仅在工程设计、最优控制、信息技术、经济均衡等领域有着广泛而直接的应用,而且对Chebyshev逼近理论、数学物理、模糊集、鲁棒优化等学术方面起着重要作用.因此,研究半无限规划的有效数值算法具有很强的应用价值,在国际上已引起学者们极大的关注和研究.许多学者利用光滑非线性规划的技术提出了求解半无限规划的各种算法,其中很多是
有限群的共轭类长以及共轭类的个数都与有限群的结构有着非常紧密的联系,众多群论工作者都参与到这一领域的研究,获得了许多重要的研究成果.近年来,人们在如何应用有限群G的真正规子群所包含的G-共轭类的个数来确定有限群G的结构方面进行了许多有益的尝试.本学位论文中的一部分就是研究有限群G的全部非平凡正规子群所包含的G-共轭类个数恰为三个连续整数时G的结构.实际上,在第三章,我们研究了有限群G的全部真正规子
早期的单区域谱方法主要是研究正方形区域、圆域等规则区域的问题,这里我们引入一个新的区域:方圆域,该区域是由B(x,y)≡x2v+y2c-1=0定义的方圆形曲线为边界的区域.这个区域的边界随着v的变化,而平滑的由圆域(v=1)变为正方形域(v=∞).这个区域有很多好的性质,值得我们深入研究.本文考虑了在八元的D4对称群下不变的区域,即这个区域是关于x轴和y轴以及对角线x=y做映射不变的.本文避免了对
复杂网络的研究正从数学和物理学不断渗透到生物学、信息科学、工程技术科学、以及社会科学等不同学科中,具备多学科交叉和融合的特征。对复杂网络上系统的动态性质即网络上的动力学行为进行深入探索,也是网络时代复杂性科学研究中的热点方向。本文综合利用概率统计、随机过程及微分方程等知识,重点研究了一类由活性驱使的特定动态网络上的偏好随机游动的动力学行为及不同网络结构下长程作用对线性量子系统和非线性量子系统的影响
真实世界中的许多复杂系统,如生物系统、社会以及通讯系统等,都是由大量的相互作用的个体单元组成,而这些个体之间往往具有一定的差异性或多样性。自上世纪末以来,通过由节点(个体)和连边(个体之间的相互作用)构成的复杂网络模型已成为了描述和研究复杂系统的拓扑结构及其动力学性质的有效工具,并在很多领域都有着广泛的应用。本文在复杂网络这一平台上研究个体多样性对网络演化以及流行病传播的影响,具体内容分为以下三个
本论文的研究内容属于Orlicz-Brunn-Minkowski理论,该领域是Lutwak, Yang,和Zhang在2010年提出的一个新兴凸几何研究方向.本文主要致力于该理论中Orlicz Minkowski问题及相关极值问题的研究.本论文的研究工作可以分为四个方面:在第二章中,我们给出了关于一般测度的Orlicz Minkowski问题的解.该结果推广了Haberl, Lutwak, Yan
约束矩阵方程问题是指在满足一定约束条件的矩阵集合中寻求矩阵方程解的问题,它在结构设计,参数识别,自动控制,有限元理论,线性规划等领域有着广泛的应用.该问题的研究主要涉及两个方面:一是理论上的可解性,即从理论上寻求问题有解的充分及必要条件;二是问题求解的实际算法,即从算法上实现问题的解.约束矩阵方程的迭代解法是算法实现的重要途径之一(另一类方法称为直接法).本文基于数值线性代数中求解一般线性方程组的
引力/范场对偶给我们提供了一个很好的工具来研究强耦合的凝聚态系统。本文主要利用引力/规范场对偶,研究了非相对论性的全息非费米液体、化学势对于对偶液体类型的影响以及各向异性的全息非费米液体。第一章,我们简单介绍了朗道费米液体理论、非费米液体、AdS/CFT对偶以及全息非费米液体。第二章中,使用带电的Lifshitz黑洞,我们研究了具有Lifshitz标度不变性的全息费米子系统。我们讨论了费米子的电荷