【摘 要】
:
近年来,光纤激光器由于其结构紧凑、输出稳定、散热性好和成本低等优点,在工业、医疗、科研等领域得到了广泛的应用。随着激光光场调控技术的发展,全光纤的轨道角动量(Orbital angular momentum,OAM)激光器成为了热门研究方向。OAM是一种具有螺旋相位分布且光场的中心强度为零的特殊光束,由于其独特的性质,在光通信、高分辨成像、光镊、材料加工等领域有着巨大的应用潜力。目前,OAM激光器
论文部分内容阅读
近年来,光纤激光器由于其结构紧凑、输出稳定、散热性好和成本低等优点,在工业、医疗、科研等领域得到了广泛的应用。随着激光光场调控技术的发展,全光纤的轨道角动量(Orbital angular momentum,OAM)激光器成为了热门研究方向。OAM是一种具有螺旋相位分布且光场的中心强度为零的特殊光束,由于其独特的性质,在光通信、高分辨成像、光镊、材料加工等领域有着巨大的应用潜力。目前,OAM激光器大多是通过腔外模式转换器件将基模谐振输出转换成OAM光束输出。相比之下,高阶模式直接谐振输出OAM可以避免模式转换器件的插入损耗,是未来实现高转换效率、高稳定性OAM激光器的重要方法。本文利用了飞秒激光直写技术制备光纤光栅,研究了基于少模光纤布拉格光栅(Fiber Bragg grating,FBG)的OAM激光器,提出了高阶模式直接谐振输出的方案,设计了一种新型波长可切换的全光纤OAM激光器,主要研究内容如下:(1)研究了光纤光栅的飞秒激光直写制备技术。搭建了飞秒激光直写法制备光栅的实验平台,基于飞秒激光逐点法、逐线法制备了多种光纤光栅:均匀光栅和相移光栅,摸索了不同光栅的直写制备工艺,测试了制备出的各类光纤光栅的光谱特性及插入损耗。(2)分析了少模光纤法布里-珀罗干涉仪(Fabry-Perot interferometer,FPI)的模式干涉原理,研究了其光谱特性和模式特性。利用飞秒激光直写加工技术,在少模光纤中制备出FPI。接着搭建了模场测试系统,测试了少模光纤FPI的OAM模式调控特性,通过改变入射光的偏振态或者反射光透过的偏振片的角度,可以产生±1阶的OAM模式。(3)研究了一种能够实现多波长输出以及横模可调节的光纤激光器。由于少模光纤FBG具有偏振依赖性以及拥有多个谐振波长,因此可以通过改变激光腔内的偏振状态,实现单波长、双波长、三波长的输出,并且选择激光输出的模式。在波长1547.4 nm处,获得了±1阶的OAM模式。(4)设计并搭建了一种基于少模光纤FBG和FPI结构的波长可切换OAM光纤激光器。利用FPI的疏状滤波特性,实现了1547.48 nm和1547.61 nm两个波长的可切换输出。在每个波长处,则可以利用偏振控制来实现±1阶的OAM模式。
其他文献
文字是人类最早记录的信息之一,也是人类开始相互沟通交流的标志之一。自然场景文字是现代社会各种场景中不同信息的载体。因此,检测定位出自然场景文字对于人类社会活动来说有着重要的意义。在实际生产生活中,自然场景文本检测应用广泛,如智能工厂、车牌识别和证件识别等。基于文字信息的重要性,学界早在上个世纪就已经开始了相关的研究。深度学习兴起后,场景文字检测领域也涌现出了大量优秀的研究来解决场景文本检测问题。然
面对化石能源的日益匮乏,以光伏为代表的可再生能源发展迅猛。并网逆变器作为光伏系统电能转换的核心器件,在未来大规模光伏并网的应用场景,决定着光伏发电的质量。光伏并网逆变器的性能优化成为了学者们的研究重点,特别是随着新一代半导体的发展,开关器件频率大幅度提高,大功率逆变器的共模电压问题备受关注。论文以多模块并联逆变器拓扑为对象,对并网逆变系统相关技术做出研究,并对共模电压,环流等难点问题做出进一步优化
证照自动识别设备广泛应用于机场、码头、车站、酒店等场所,现有设备常用普通面阵相机实现证照成像,存在成像距离长、设备体积大等缺点。鱼眼摄像头焦距短、视角大,可有效减小成像距离,进而减小证照识别设备的体积。采用双鱼眼摄像头可进一步减小成像距离,实现证照识别设备的小型化,但存在图像畸变、图像配准和图像融合等问题,本文针对以上问题开展了相关技术研究。首先,针对鱼眼摄像头成像的几何畸变问题,研究了基于棋盘格
腔光力学是将光学微腔与机械振子结合起来研究光场和机械振子之间相互作用的前沿学科。近年来,得益于微纳加工工艺的巨大进步,光学微腔品质因子不断提高,模式体积越来越小,腔光力学得到快速发展,在基态冷却、基础物理、声子激光以及弱力传感等方面应用广泛。与此同时,奇异点光力学系统的性质和应用近年备受关注,显示出巨大的发展潜力。奇异点特殊的物理机制产生了手性激光、快慢光转换以及非互易光学传输等很多新奇的物理效应
原子钟是迄今为止最精确的时间基准设备,为国际原子时报数提供时间基准。根据钟跃迁频段不同,原子钟划分为微波钟和光钟两种类别。为建设高精度的时间频率标准,本课题组正在开展基于量子逻辑技术的镁-铝离子光钟研究。我们完成了离子囚禁系统、光路系统以及控制系统的设计,搭建了铝离子光钟实验平台,并成功探测到量子逻辑跃迁信号和钟跃迁信号。在该背景下,本论文展开了光钟闭环锁定和稳定度优化的研究,主要完成工作如下所述
第一部分单中心1840例直肠癌前切除患者吻合口漏情况分析目的:比较直肠癌前切除术后不同严重程度吻合口漏患者的临床病理特征。方法:回顾性收集2014年1月至2019年12月华中科技大学同济医学附属协和医院外科行直肠癌前切除患者临床病理资料,根据患者吻合口漏严重程度分组。采用卡方检验、单因素方差分析比较不同严重程度吻合口漏患者临床病理特征。结果:1840名直肠癌前切除患者纳入研究,138例患者发生术后
中国“2030年碳达峰、2060年碳中和”目标的提出加速了各行业的全面低碳转型,发电行业首当其冲。碳交易机制作为推动社会低碳转型的重要力量也愈受关注。但我国碳市场还不成熟,从发展的视角看应积极引入碳期货等创新性产品,以实现碳价格对企业减排的实质性激励。文献调研显示,在评估碳期货的引入对企业减排、行业低碳转型的影响方面,还存在较大的研究空白。作为首批纳入全国碳市场的行业,发电行业未来也有望成为首先进
脉冲强磁场作为一种揭示物质未知现象和效应的极端实验环境,被广泛应用于物理、化学、生物等领域的前沿科学研究中。脉冲强磁场的产生是一项挑战极限的强电磁工程技术,复杂性高、技术难度大。为了满足前沿科学研究的发展需求,磁场波形与磁体结构形式正在日趋多样化,磁场参数向更高磁场强度、更长持续时间、更稳磁场波形以及更高重复频率等方向发展,亟需建设高水平的脉冲强磁场装置。而控制系统作为脉冲强磁场装置核心组成部件之
结构轻量化是目前船体建造的主要方向之一,而高强钢薄板在其中扮演了十分重要的角色。切割工艺作为焊接生产必经的首道工序,切割的质量与效率将会直接影响船体建造的质量与效率。板材在切割过程中由于受热不均匀产生的残余应力和变形,会对后续的建造工艺特别是焊前装配精度造成严重影响,这点在薄板切割上体现尤为明显。本文使用典型的热切割工艺—火焰切割,以Q550钢薄板为研究对象,采用试验与有限元数值模拟相结合的方法,
二维磁性材料因为具有一系列不同于块材和薄膜的物理特性,以及易于进行电气控制和化学功能化等优点,有望进一步推动基础物理学相关理论的发展以及磁性材料在二维自旋电子学、片上光通信和量子计算等新技术领域发挥关键作用。而二维磁性材料想要得到真正的应用,寻找并可控制备具有高居里温度(TC)和稳定性等优异磁学性能的二维材料是至关重要的。铬基碲化物作为室温铁磁体的理想候选材料,受到了人们的极大关注。在这个背景下,