基于WOA-WPA改进BP神经网络的配电网故障定位方法研究

来源 :辽宁工程技术大学 | 被引量 : 0次 | 上传用户:chu74042828
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
处于电力系统最末端的配电网络是对电能进行分配的重要环节之一,近年来,随着接入配电网的负荷不断增加,配电网结构越加复杂,对配电网络的可靠性的要求也不断提高。采用小电流接地系统的配电网络在发生单相接地故障后虽然可以带故障运行1~2小时,但若不能及时准确确定故障线路故障点,极有可能会引起相间短路,给系统运行带来了极大的安全隐患。实现配电网络快速、准确的故障定位,对整个电力系统安全稳定运行具有十分重要的意义。本文首先对配电网故障发生后电流、电压的特征进行分析,根据毕奥-萨伐尔定律,提出以检测配电网故障磁场特征变化作为提高传统故障定位精度的辅助方法,通过仿真得到配电网发生故障后电流、电压以及磁场的变化特征。其次,将仿真得到的电流、电压以及磁场通过HHT变化,进行有效特征量的提取作为配电网故障的多个特征量样本,应用BP神经网络,实现对配电网故障点的定位,仿真发现BP神经网络对结构愈加复杂的配电网故障定位具有一定优势,但仍存在一些缺陷。BP神经网络虽然能在经过一定学习训练后可达到配电网故障定位的需求,但在计算时,收敛速度较慢,还有可能陷入局部最优解的情况。针对BP神经网络的不足,提出通过WPA与WOA算法相结合对BP神经网络进行优化,通过WPA-WOA对目标函数特征量进行最优处理代替BP神经网络的最初权值与阈值,提高了BP神经网络运算速度,提高了准确度。设计了WOA-WPA-BP神经网络的运行流程,提出了WOA-WPA-BP神经网络应用于配电网故障定位的新方法,利用MATLAB/SIMULINK仿真,验证了该方法对配电网故障定位的可行性和准确性。该论文有图48个,表11个,参考文献60篇
其他文献
精益生产是制造业较为先进的生产方式,在提升企业竞争力方面效果显著,得到了众多企业的认可。F公司是国内生产托辊的传统企业,由于客户订单量不断增加,为了提高托辊产量,公司决定在托辊生产车间全面推行精益生产。价值流是精益改善的重要工具,能够识别生产浪费,消除不增值部分,提高生产效率。基于精益理论,通过现场调研、现场测量的方式收集了托辊生产相关的数据信息,找出影响托辊生产效率的主要问题并对问题进行现状分析
长三角城市群是我国重要的经济增长引擎,其物流产业在区域经济一体化发展的带动下,已显现出空间集聚态势。长三角城市群各城市间的区域差距大,发展不均衡,其物流产业集聚对物流发展的影响及其溢出效应并不确定,难以进行物流产业的合理布局与管理。物流产业效率是衡量物流产业发展质量的重要指标,长三角城市群物流产业集聚的溢出效应可以通过物流产业集聚对物流效率的影响来判断。本文利用区位熵值法和DEA模型对长三角城市群
为了应对激增的市场需求,恒久安泰在不变动企业生产结构的同时,联合外部制造商的协同调度对生产运营进行优化。在当前的生产环境下,企业的生产协同调度效率低下,经常出现节点内订单阻塞,产能负载上限较低,无法按时完成订单。围绕降低资源调度的交付时间,延长阻塞时间以及提高生产负载上限来改善协同生产系统中的生产调度问题,展开以下两个方面的研究:(1)针对企业的实体生产运营的操作流程,提出了一种基于多智体系统(M
为了解决正负样本不均衡分布造成的分类边界偏移,训练模型对少数类样本学习不充分的问题,提出了融合条件熵和TFIDF的HTTE过采样方法(Oversampling technology based on conditional entropy and TFIDF)和基于BERT与卷积神经网络的标签文本分类算法。HTTE采用信息论的方法,计算每种特征组合情况下标签的条件熵,再融合TFIDF值,保留数据特
随着时代的进步,以电力电子技术为基础的功率型电子器件及各种非线性负载在民用和工业中的大量应用,造成对电能质量的严重影响,同时也对电网质量提出了更高的要求,如何有效地提高电能质量,愈来愈成为人们所关注的问题。有源电力滤波器(Active Power Filter,APF)实现了电网谐波的高精度动态补偿,同时又兼顾了无功补偿等优点,成为当前电网谐波治理领域的重要研究方向。本文以并联型有源电力滤波器作为
行人检测是计算机视觉和图像处理领域的研究热点,广泛应用于智能视频监控、自动驾驶和智能机器人等领域。传统行人检测方法在一定条件下可以获得较好的行人检测效果,但在分辨率低、行人尺寸较小的情境下存在检测精度低的问题。针对上述问题,本文将深度学习方法中的基于区域全卷积网络(R-FCN)的目标检测算法引入到行人检测中,在R-FCN基础上做了一些改进,提出了一种基于区域全卷积网络的行人检测研究。首先,为了使行
随着互联网技术发展和国民收入增加,外卖订单的数量在持续的增加,给外卖行业带来的前所未有的发展机遇。外卖配送作为整个外卖过程中的核心业务,在其配送的过程之中,外卖路线的规划对于外卖配送效率、外卖配送成本以及用户的满意度将会产生巨大的影响。外卖市场处于激励的竞争阶段,采用合理、科学的方法对外卖配送路线进行规划,如何在保证配送服务质量的前提下控制外卖配送成本、提高外卖配送效率是外卖平台一个需要解决的问题
针对卷积神经网络浅层提取的特征利用率低,高低层特征互补优势难以利用的问题,提出了选择性特征连接机制(Selective Feature Connection Mechanism,SFCM)融合卷积神经网络高低层特征的方法以提高图像识别精度。首先,选定卷积神经网络低层特征,通过平均池化对低层特征降维,输出携带较多细节信息的低层特征;其次,按照卷积神经网络高层特征元素值越大,它所对应的位置特征越关键的
方面级情感分析(Aspect-based Sentiment Analysis,ABSA)作为一种细粒度的情感分析方法,可以对文本特定目标进行相应的情感倾向判定。针对现有基于注意力机制的方面级情感分析方法多关注词的相对位置特征,忽略上下文绝对位置特征的问题,本文提出了一种基于门控卷积神经网络的方面级情感分析模型Pos ATT-GTRU-ABSA。首先,模型使用Laplacian核函数构建相对位置特
音乐流派分类领域中音频特征的流派性表达、特征提取的设计,严重影响分类方法的精度和泛化性,因此提出一种将双注意力融合进行特征提取的深度卷积神经网络(DCNN-AFC)模型,并对音频功率谱图中特征的流派性表达进行增强。首先,为考虑音频功率谱图中音乐流派特征的多样性,在特征提取阶段采用梅尔滤波方法,以模拟人耳听觉系统的滤波器对音频信号进行有效过滤,通过对梅尔滤波后的信号进行维度还原,确保音频信号的流派特