粘性依赖于密度的一维可压缩Navier-Stokes方程Cauchy问题解的时间衰减估计

来源 :首都师范大学 | 被引量 : 0次 | 上传用户:zhouxiangguchan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文考虑如下粘性依赖于密度的一维可压缩Navier-Stokes方程Cauchy问题:其中ρ(x,t)和u(x,t)分别表示流体的密度和速度,γ≥1, (?)≥0为常数.本文主要研究粘性依赖于密度的一维可压缩Navier-Stokes方程Cauchy问题解的时间衰减估计,其内容分为如下两部分。1.考虑当(?)>0时Cauchy问题解的时间衰减估计.我们先得到ρ-(?)和u在L2(R)下的时间衰减估计,然后利用这个估计得到ρ-(?)在L∞(R)下的时间衰减估计.2.考虑当(?)=0时Cauchy问题解的时间衰减估计.我们通过构造泛函,用能量的方法,同样得到了ρ在L∞(R)下的时间衰减估计.
其他文献
随着全国城镇化进程的加速,农村、农业、农民向城市、非农产业、市民转变的速度、规模和深度均出现了新的变化,社会变迁从渐进状态走向突进状态。与这一形势相适应,村居混杂、松散型的动迁安置社区大量出现,并在当今社区的组成中占据了相当大的比重。动迁安置社区为各种利益关系和矛盾集中的地区,面临着社会组织网络和社会治理体系重构的艰巨任务。社区党组织作为社区治理体系的灵魂和核心,如何以党建工作为切入点,发挥党建引
这是一篇基于文献[1][2][3][8][9][10]的综述文章,始终围绕为核心来展开。第一章回顾了Navier-Stokes方程的背景及现状,引入了处理平面区域上的Navier-Stokes方程最常用的一种方法-涡度流函数法.第二章给出了一些预备知识,这些知识在经典的教科书(如[4][6][7])及文献([3][5])中都可以找到,或通过简单的数学计算可以得到.第三章通过三个定理,从理论上给出了
利用对易空间中推广的Chern-Simons公式,我们研究了Q-多项式系列所具有的性质以及它们的简化表达形式;然后基于非交换空间,我们给出了Chern-Simons公式在非交换空间中的推广情形.
本文证明一维粘性系数依赖于密度(μ(ρ)=ρα)可压Navier-Stokes方程整体弱解的存在性.特别地,我们要求初始密度在L~1(R)∩L∞(R)中,并且在x=-∞和x=+∞是常数,可以取不同的值且初始密度允许取到真空.所得结果适用于一维浅水波Saint-Venant模型.
女性意识是女性通过后天学习和成长经历中觉醒的自我意识,是女性作为具有独立人格的自然人逐步拥有的产物。21世纪以来,迪士尼公司陆续上映了一系列公主真人电影,随着女权运动的发展,传统的迪士尼公主形象发生了巨大的改变,女性意识开始逐步觉醒。该文对迪士尼真人电影《阿拉丁》中茉莉公主女性意识的崛起进行分析,展现了茉莉公主从温柔、单纯、善良转变为一位勇于追求独立、平等,敢于反抗,胸怀大志的女性。
学位
信赖域方法是非线性优化的一类重要的数值计算方法.它在近二十年来受到非线性优化领域许多研究者的关注,是非线性优化的研究热点.与线搜索相比,信赖域有两个突出的优点:一是它有很强的稳定性和强适性,二是它具有很强的收敛性.由于信赖域的有界性,它可以处理非凸的近似模型.目前,信赖域方法已经和传统的线搜索方法并列为求解非线性规划问题的两类主要数值方法[1],与线性搜索方法相比,信赖域算法不仅具有很强的收敛性[
学位
本文主要研究求解无约束优化问题的混合共轭梯度方法.共轭梯度法属共轭方向法的一种.共轭方向法是介于最速下降法与牛顿法之间的一种方法,它仅需要利用一阶导数信息,克服了最速下降法收敛慢的特点,又避免了存储计算牛顿法所需要的二阶导数信息,对正定二次函数的极小化,它具有二次终止性.因此可望对一般的函数有较快的收敛速度.最典型的共轭方向法是共轭梯度法,其基本思想是把共轭性与最速下降法结合,利用已知点处的梯度构