【摘 要】
:
水下油气生产过程虚拟现实仿真平台应用虚拟现实技术通过水下动力学仿真与多个仿真系统之间的集成,实现对工作人员的虚拟操作培训。针对该平台中数据难以有效管理的问题,在本文的研究中首次将时空数据库技术应用于虚拟现实仿真系统,开发了一套适用于该虚拟现实仿真平台的数据管理系统,主要研究内容如下:(1)对水下油气生产过程虚拟现实仿真平台进行了数据流分析。对数据管理系统进行需求分析和基于C/S架构的总体设计,构建
【基金项目】
:
国家重大专项《南大西洋两岸重点盆地油气勘探开发关键技术》课题四《海上油气田关键工程技术》中的子课题三《海洋工程模拟仿真系统》;
论文部分内容阅读
水下油气生产过程虚拟现实仿真平台应用虚拟现实技术通过水下动力学仿真与多个仿真系统之间的集成,实现对工作人员的虚拟操作培训。针对该平台中数据难以有效管理的问题,在本文的研究中首次将时空数据库技术应用于虚拟现实仿真系统,开发了一套适用于该虚拟现实仿真平台的数据管理系统,主要研究内容如下:(1)对水下油气生产过程虚拟现实仿真平台进行了数据流分析。对数据管理系统进行需求分析和基于C/S架构的总体设计,构建了系统时空轨迹数据库和基础信息数据库。(2)提出了一种基于空间R树和一维时间索引的混合索引,设计了文档化的空间R树的更新方法和相应时空查询方法。对索引模块做出了查询性能测试以及对比测试。(3)设计系统UI并细化了系统的各个模块,通过.Net Framework框架、C#语言对各个模块的功能进行编程实现,对系统数据库进行加密设计,最后对系统进行功能测试。经查询测试和系统功能测试,本文构建的时空索引对于轨迹数据的查询速度具有可观的提升效果,且在数据集越大时提升效果越为明显。系统在功能及性能上都满足需求,可有效管理虚拟现实仿真平台中的各种数据以及信息。
其他文献
近年来随着国家加大环保治理力度,颁布了新的工业污染物排放标准,对于原油炼化企业催化裂化装置的达标排放提出了更高的要求。大数据时代下,需要切实提升监测手段,结合机器学习方法进一步挖掘和发挥污染源在线监控系统作用,减少或避免环境污染事件及其他重大环境问题的发生。污染排放数据在采样、传输与存储过程中,会受多种因素影响而产生异常值。为避免异常值对后续数据分析与预测的影响,数据清洗是必不可少的重要环节。本文
近年来,由于数据量的大幅度增长和计算机硬件水平的提升,以生成对抗网络(GAN)为主体框架的深度学习逐渐成为热点话题,并在很多领域的应用中取得较好的效果。同时,对多元时间序列数据的异常检测,无论在智能运维还是电力或网络系统监测等方面都起着至关重要的作用。基于深度学习的异常检测比传统的机器学习算法更能挖掘出数据中的特征表示,因此将GAN应用于多元时间序列的异常检测是一个非常重要的研究方向。本文工作主要
实体关系抽取是信息抽取的核心任务之一,其目标是从文本中识别实体并抽取出实体间的语义关系。实体关系抽取是构建知识库、知识图谱的重要步骤,在智能问答、基于关系的搜索引擎和机器翻译中应用广泛。然而,相较于通用领域,油气勘探领域的实体关系抽取面临着缺少训练数据的挑战。人工标注训练数据代价昂贵并且目前已有的标注方法无法自动化标注大量高质量的训练数据。另一方面,油气勘探领域实体和关系种类多样,难以预定义全部的
随着我国在工业领域的高速发展,危险气体意外泄漏扩散引发的火灾、爆炸以及造成人员伤亡等事故发生的频率也在不断增加。在气体扩散模拟分析中,计算流体动力学对计算机的要求限制了它的应用,本文建立了计算流体动力学的代理模型来预测气体浓度随时间的变化趋势以及预测气体的空间分布特征,研究主要从以下三个方面展开。首先利用随机Hamersley采样设计输入变量的值,从而实现利用较少的样本点实现空间更好的覆盖效果。基
从卫星地图准确标注出建筑物地基轮廓在地理信息勘测、区域建筑规划等领域等方面的工作中有着重要的意义。但是由于卫星拍摄图像时会带有一定角度,图像中建筑物位置会与其地基轮廓位置产生偏差,传统图像语义分割方法基于图像的像素值进行划分,只能得到建筑物图像,无法得到建筑物地基轮廓。同时由于卫星图像数据来源较少,数据集获取较为困难,数据集中卫星图像涵盖的拍摄角度也十分有限,这会导致语义分割模型无法得到充分训练。
信道估计的好坏在很大程度上决定了整个通信系统性能的优劣,一直是无线通信系统研究的热点问题。信道估计能够获知信道的状态信息,通过对接收端数据进行补偿以恢复出原始数据,从而提高整个通信系统的传输性能。随着无线通信业务的爆炸式增长,信道环境日趋复杂化,人们对通信系统的要求也越来越高。在复杂信道条件下,如何使信道估计更为准确,已经成为目前研究的新热点,特别是在面向未来的智能通信中,新老技术的结合无疑是国内
客观对象可抽象表达为数据样本,而数据样本维度的增长导致其表达信息的复杂程度在不断提高,另一方面,客观对象往往存在着多义性,因此,多标签的特征选择是数据挖掘和模式识别等领域研究和应用的热点之一。其旨在剔除无关特征和冗余特征,从而提高学习效率、优化模型性能等。本文提出了UN-MLFSPO算法,通过希尔伯特-施密特独立性准则(HSIC)度量特征和标签之间的关联程度,然后在展开的高维空间中使用帕累托最优原
近年来,我国深化改革力度不断加强,环境保护受到了越来越多的关注。石油炼化企业需要相应地提高环境管理水平,保障生产过程符合相应的政策要求,杜绝重大环境污染事件发生。催化裂化装置是炼化企业主要污染物排放源,并且催化裂化反应机理复杂,污染物的排放存在不确定性。如何根据催化裂化装置的生产要素和历史排污数据,预测其未来的变化趋势,减少排污的不确定性变得非常重要。有效的污染物排放预测可以为石油炼化企业生产计划
近年来,天然气越发在国民经济中占据重要地位,然而,从理论研究出发继而推导出相关结论再应用于实践指导这样的传统思路,越来越跟不上行业的发展步伐,严重制约了气田和气井的开发。本文应用先进的大数据技术,让数据指导实践,通过对石油天然气勘探开发过程中产生的大量数据进行分析,可以为实际勘探开发提供快速指导和决策支持。研究中采用Python语言结合机器学习技术对实际气田的大量数据进行了提取、处理、建模、分析和
卫星图像语义分割是指将卫星图像中有价值的信息进行标注。由于卫星图像的规模庞大,其中包含的信息也很丰富,需要通过图像分割算法从这些大规模卫星图像中快速提取出有效信息。然而现有的图像分割算法仅支持小规模图像分割,无法对大规模图像直接进行分割。为了解决大规模图像分割问题,本文研究并设计了大规模卫星图像语义分割系统,并且从以下三个方面进行了研究与探索。首先将大规模图像裁剪成若干张符合图像分割算法输入要求的