InGaN纳米棒的生长制备及光电解水性能研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:sheryme
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
全球对化石燃料的依赖以及温室气体人为排放量的增加,使得未来必须开发清洁的可再生能源。太阳能是最有希望解决能源危机和环境污染的可再生能源。虽然太阳能可以通过使用太阳能电池吸收转换,但是这种光伏设备受到太阳光间歇性的限制。因此,有必要采用新的方法储存太阳能以满足能源的需求。利用太阳能驱动分解水就是一种有效的途径,因为它可以在没有碳参与的条件下产生绿色环保的氢能。本文通过使用自制的卤化物化学气相沉积(HCVD)装置对InN纳米棒和InGaN纳米棒的生长制备进行了研究,并对所制备的InGaN纳米棒光电催化(PEC)水分解性能进行了测试分析。取得的主要结果如下:(1)利用HCVD法,以InCl3为铟源,NH3为氮源,在Si(111)衬底上实现无催化InN微纳米棒的可控生长。考察了InCl3源区温度、NH3流量和N2载气流量对InN微纳米棒形貌结构的影响。结果表明,InCl3源区温度的升高有利于提高InN纳米棒的形核率和生长速率;NH3流量大小对InN纳米棒晶体质量有重要影响,适量NH3流量会满足In源生长需要的Ⅴ/Ⅲ比,改善纳米棒晶体质量,当NH3流量过大时,In空位缺陷的形成会使晶体质量变差;N2载气流量大小会影响In源和N源的浓度和偏压,从而能有效调控InN纳米棒直径和生长速率。(2)在InN纳米棒可控制备的基础上,加入GaCl3并以其为镓源,进行了InGaN纳米棒的生长制备。研究了反应温度和Ga源放入量对InGaN纳米棒形貌组分的影响,同时对所制备InGaN纳米棒样品的PEC水分解性能进行了测试分析。结果表明,反应温度升高有利于Ga原子并入,当反应温度过高时,InN的分解会降低晶体生长速率和生长质量;Ga源放入量提高有利于提高InGaN纳米棒的形核率及比表面积,但Ga源放入量过高会促使纳米棒相互合并降低晶体质量。光电化学测试表明,除了组分之外,InGaN纳米棒的缺陷密度也会影响其PEC性能,纳米棒在合并过程中会引入大量晶体缺陷使大量光生载流子在缺陷处复合从而导致光电流密度大幅降低;同时,高密度的表面态会造成费米能级的钉扎,使得光电压降低;在稳定性测试中表明所制备InGaN纳米棒具有较好的抗光腐蚀性能。总之,利用InCl3、GaCl3为原料,实现了直径为200nm-1600nm的InN纳米棒可控制备,并实现了最高Ga含量为23%的InGaN纳米棒制备。将其制备为光电极进行PEC水分解测试发现缺陷密度的升高是影响PEC水分解性能的主要因素,为未来进一步提高InGaN纳米棒PEC水分解效率奠定了基础。
其他文献
综放开采具有回采成本低、地质条件变化适应性强,高产高效等优势,已成为我国厚煤层开采的主要方法之一。国内外学者围绕此项开采技术开展了大量理论与试验研究,并取得丰硕研究成果,但在顶煤放出率与工序设备的配合方面仍需进一步探究。首先,存在采出率相对较低的问题,因此,需要明确破碎后顶煤在支架上方的流动及放出规律,基于此规律指导放煤工艺的选取、放煤终止原则的确定,以尽可能的提高工作面回收率、降低含矸率;其次,
利用矸石骨料胶结充填材料进行煤矿结构充填开采时,充填体作为主要的支撑构件,其稳定性(包括开采过程中的短期稳定性和开采后的长期稳定性)决定了采空区的稳定性。因此,研究充填体在上覆岩层荷载作用下的变形、损伤及失稳特性具有重要意义。其中,蠕变变形贯穿整个结构充填开采过程,在采煤工作面向前逐步推进过程中,顶板下沉产生的荷载分级施加到充填体上产生短期蠕变变形,开采完成后,充填体在上覆顶板恒定荷载作用下的长期
在干热岩地热资源开发、核废料深埋储存、热力破岩等关键工程中,岩石在温度场的作用下产生热损伤是非常普遍的现象,尤其是当温度剧烈变化时,引起的热冲击破裂往往会对干热岩井筒、核废料处置库带来严重安全隐患,而合理运用这一现象也可以提高热力破岩以及干热岩储层增渗改造的效率。热冲击应力是由热冲击过程中剧烈变化的温度梯度导致的,因此从传热学角度对热冲击破裂的演化机理进行分析,实现对热冲击损伤的表征,对上述工程实
近年来,选煤厂作为煤炭行业的重要环节,在不断的加快智能化建设的步伐,向高端化、智能化和绿色化的方向发展。煤泥浮选作为煤炭分选的重要工艺环节,长时间以来存在生产成本高、生产效率低的问题,其工艺过程向自动化、智能化的发展势在必行。在浮选生产过程中,浮选尾煤灰分作为重要的生产指标,对实现浮选过程闭环优化控制具有重要的意义。但长时间以来,缺乏有效的灰分在线检测技术,这已经成为了限制浮选工艺智能化发展的重要
二氧化钛(TiO2)纳米线是一种典型的纳米无机材料,具有超高的比表面积、优良的光催化活性和较好的生物相容性,已经广泛用于工业和生物医学等领域。基质辅助水热法因操作简单、产物结构易于调控等优点已经成为当前最受欢迎的TiO2纳米线合成方法。传统的基质材料主要包括FTO玻璃及钛片,然而所制备的TiO2纳米线与基质材料之间的界面作用力往往较弱,导致TiO2纳米线易于从基质材料表面脱落,形态与结构难以控制。
微球具有高比表面积、良好可流动性等特点,是常用的可注射型细胞载体之一。传统的合成微球表面多是致密结构或者多孔结构,不能很好地模拟细胞外基质的纤维结构,增强细胞与材料之间的相互作用。近年来,有研究表明纳米线不仅可以很好地靶向运输载体,还能够传递生物信息。二氧化钛(TiO2)是一种无机材料,具有稳定的化学性能,在载体材料方面有较大应用前景。丝素蛋白是一种常见高分子材料,具有良好的生物相容性、水溶液稳定
掘进工作面在煤矿开采过程中会产生大量粉尘,不但严重威胁着井下工作人员的职业安全健康,也影响企业生产的发展和社会的稳定。由于掘进工作面具有机械设备多、工序繁杂、通风风量大以及空间狭窄等特点,导致巷道内粉尘生成量大且集中。目前,绝大多数煤矿未能根据掘进工作面的作业需求采取实时有效的防尘、降尘技术。本文在系统研究了国内外掘进工作面除尘技术方法的基础上,结合煤矿掘进工作面的实际情况,采用理论分析、数值模拟
为了满足现代工业对精密零部件越来越高的需求,现代机械加工的精度与稳定性也必须与时俱进。机床加工过程中产生的振动是制约其加工精度进一步提升的重要因素,而传统铸铁机床的低阻尼比导致其减振性能较差,通过优化机床结构也难以实现大幅提升减振性能。树脂矿物复合材料(Resin Mineral Composite,下文简称RMC)机床则以其优异的阻尼减振性能应用于精密加工领域,RMC是以树脂为粘结剂,破碎的天然
现代工业技术的进步日新月异,人们对材料的性能要求越来越高,单一材料现在已经不能满足人们的要求。因此,研究和制备新型复合材料并将其应用在工业领域是当下最重要的任务之一。碳钢具有强度高、成本低、加工性能好等优点,而不锈钢具有较高的表面性能和良好的耐腐蚀性,碳钢/不锈钢复合板同时具有两者优异的性能,可以节省Cr和Ni等贵金属。广泛应用于石油、化工、食品、水利等重要领域。在整个碳钢/不锈钢复合板的产业链中
ZL101属于铸造铝合金,它成分比较简单,而且具有较低的成本,较好的铸造流动性和较宽的半固态区间,是一种适合半固态加工的具有代表性的典型铝硅合金。颗粒增强铝基复合材料通过在金属基体内加入颗粒增强相的方式,使复合材料结合了基体金属的韧性、比强度,增强颗粒的强度、硬度和耐磨性等优点,是一种综合性能较优异的材料,可以满足现代技术发展对材料提出的更高要求。半固态技术具有流程短、热裂倾向低、成形好等优点,本