基于非线性光学差频技术的小型化高重频太赫兹源研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:lori1017
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
太赫兹波在光谱检测与医学成像等领域具有重要应用价值。小型化高重频太赫兹源能够缩减仪器设备的体积和成本,方便操作,且具有高平均功率及高采样速率等优势,是目前太赫兹源研究的重要方向之一。非线性光学差频技术具有成本低、装置简单、调谐范围宽、无阈值和室温运转等特点,是实现小型化高重频太赫兹源的重要途径。本文围绕这一课题开展研究工作,主要工作内容和创新点如下:1、基于端面泵浦的内腔光学参量振荡器,以Nd:YVO4和Nd:YLF作为激光介质,利用KTP和PPLN晶体进行实验,获得了最高4.15W的2μm双波长输出,脉冲重复频率25k Hz左右,波长调谐范围1.92-2.38μm,光光转换效率达22.5%,是已报道同类激光系统的最好结果。将上述双波长激光在QPM-GaAs与Ga Se晶体内差频,实现了最高功率1.8μW,调谐范围0.24-3.78THz的太赫兹波输出,整个系统长度在180mm以内,并成功用于材料光谱分析与多光谱成像。2、设计了以GaAs为主要材料的混合脊型波导,采用2μm与10μm双波长激光器作为泵浦源,理论计算了差频产生太赫兹波的输出特性。通过改变波导的结构参数,太赫兹波可在1.59-2.66THz内实现单色调谐输出,最高的输出功率56.16μW,转换效率5.62×10-5W-1,比传统块状晶体差频的转换效率提高了近两个数量级。波导结构可应用于集成光学系统,设计更为灵活,是实现小型化差频太赫兹源的理想选择。3、通过对量子阱材料进行合理的设计,在中红外双波长量子级联激光器中引入了能够实现差频的能级结构,有源层分别采用束缚态到连续态跃迁结构与双上能级结构,利用外腔双光栅调谐与切伦科夫辐射等技术,实现了重复频率30k Hz,峰值功率65.2μW的太赫兹波输出,调谐范围为2.25-4.5THz。内腔差频太赫兹量子级联激光器能够室温工作,可为集成化系统提供小型的高重频太赫兹源。
其他文献
精密数控机床广泛应用于航空航天、精密加工领域,是保障国防和国家工业发展的基础装备。直线运动轴是数控机床的核心传动部件,直线轴的重复定位误差反映了机床定位的稳定性和一致性,是机床的核心精度指标。本文主要研究了机床直线轴重复定位误差抑制技术和机床误差评价方法的相关理论与方法,涉及直线轴重复定位误差机理、抑制技术和直线轴误差及整机误差的评价方法等研究内容。针对直线轴重复定位误差机理不清的问题,从理论研究
光纤MEMS法珀传感器具有灵敏度高、体积小、抗电磁干扰、耐高温、可靠性高、可批量化生产等优势,非常适用于航空航天等领域中大气物理量的传感。本文针对大气物理参量高精度、同时测量的需求,开展了光纤MEMS复合法珀传感器的研究。对光纤MEMS法珀压力传感器中影响测量精度的因素进行理论分析,提出法珀微腔内部残余气压长期监测方法。研究了高精度光纤MEMS复合法珀折射率和温度、气压和温度传感器,实现了双参量同
搅拌摩擦焊技术(FSW)是一种通过搅拌热塑性变形的固态金属实现连接的新型焊接方法。该方法避免了常见的熔焊缺陷,能够形成性能好且成形美观的焊接结构,已在航空航天、高速铁路等行业广泛应用。然而,FSW过程中常出现孔洞缺陷,严重影响焊接接头的力学性能。为避免孔洞缺陷的形成,需在焊接试验之前选择合理的焊接参数、试板材料和尺寸,以及搅拌头材料和几何形状,以形成无孔洞缺陷的焊接接头。试验中即使采用合理的焊接条
随着在线社交网络的兴起,大量的用户在互联网上发表文字表达自己的情感,其中既包含对生活、事件的情绪抒发,又包含对产品各个方面的使用体验和评价。这些情感表达为文本情感分析研究提供了数据基础。文本情感分析研究人们在文本中表达的情感、态度、观点、情绪。情感分析任务存在不同的粒度,包括句子级、目标级和方面级。在不同应用场景需要使用不同粒度的情感分析。不同粒度下的情感分析任务由于本身数据结构的特点,各自有着不
本文密切结合我国高端装备制造中对大型构件现场加工的重大需求,系统研究了一种高性能五自由度混联加工机器人的构型创新、参数化建模与性能评价,以及基于综合性能驱动的设计理论与方法,并开展了与这些研究内容相关的实验验证工作。全文取得了以下创新性成果:(1)构型综合、优选与机构创新从分析平面运动链的共面约束入手,提出一种综合一类过约束1T2R(T——平动,R——转动)并联机构构型的新方法,具有可视性好、简单
云是悬浮在大气中的大量小水滴和冰晶微粒组成的可见聚合体,研究云的尺寸、形状和相态等微物理特性,对揭示云的发展过程和降水形成机制,以及人工影响天气等具有重要作用,但目前的探测方法不能同时满足云粒子的尺寸测量、相态判别、云中冰晶粒子形状识别的需求。干涉粒子成像技术IPI(Interferometric Particle Imaging),是一种基于粒子散射理论的测量技术,采用该技术已经实现球形液滴粒子
近年来,三维点云作为一种新兴的物体表征方式,因其简洁性以及强大的表达能力,开始被广泛应用在三维目标识别的研究领域中。然而,由于采集的原始三维点云数据易受扫描设备固有特性等因素影响,本身不可避免地会引入噪声。因此,很有必要对原始三维点云数据进行滤波操作从而为后续识别任务提供高质量的点云模型。另一方面,三维点云特征描述作为识别任务中另一个至关重要的步骤主要包括人工设计和深度学习特征两大类。目前人工设计
随着压缩感知模型和低秩矩阵模型在计算机视觉和机器学习等领域的广泛应用,低秩张量模型也得到了越来越多学者的关注。目前求解低秩张量模型常用的做法是把模型中的秩函数替换为张量核范数,由此原模型就转变为凸松弛模型。然而在很多情况下凸松弛模型与原模型之间存在很大差异,其计算结果在实际应用中难以达到精度要求。因此研究者们开始研究原模型的非凸松弛模型。但就目前研究来看,非凸松弛模型中的非凸函数会使其相关理论变得
由于单模光纤通信系统容量正逐渐逼近非线性香农极限,基于少模光纤的模分复用技术在最近几年得到深入的研究和发展。少模光放大器是模分复用技术落地的关键环节。本论文以少模掺铒光纤放大器、少模光纤拉曼放大器的理论模型为基础,研制增益均衡的少模光纤放大器。本论文的工作主要包含以下几个方面:1.为简化泵浦结构复杂性,消除简并泵浦模式角度依赖,通过设计两层铒离子掺杂结构的光纤,采用基模纤芯泵浦的方法,实现了C波段
随着数码相机、智能手机等数码设备的普及,用户可以随时随地拍摄各种感兴趣的场景。然而,在图像采集、传输、存储的过程中,存在多种因素导致图像质量降低,低质图像除了降低用户的视觉体验,也会影响后续的视觉算法的效果。因此,对这些低质量图像的增强将有助于人们更好的理解图像内容。图像增强可以作为图像分割、图像识别、纹理替换以及虚拟场景和真实场景之间的相似度评价等研究的前序处理。增强算法不仅需要提升图像的清晰度