多天线系统下行干扰抑制消除的研究

来源 :电子科技大学 | 被引量 : 1次 | 上传用户:sz398143634
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
智能手机的普及,大大的刺激了人们对于更高通信速率、更好通信质量的迫切需求,同时也促进了无线通信的迅猛发展。小区的细分化、天线数目的增多以及异构网络技术的应用导致了小区之间的相互覆盖越来越多,这些下行多用户干扰严重地制约着无线通信的通信质量和系统性能。传统的干扰抑制方案中常用的方法是预编码技术。由于在实际的通信过程中,发射机无法掌握下行信道状态信息,需要用户在上行信息中添加与信道信息相关的导频信号来进行信道或预编码矩阵的估计。因此预编码方法不仅受到信道估计误差的影响,还受到用户反馈误差的影响。鉴于这个问题,一些学者提出了接收机干扰处理方案的思想。此外,在预编码方案中,非线性预编码方案比线性预编码方案的系统性能要好,但是由于其复杂的计算方式导致其很少应用在实际的通信过程中。然而在点对多点的通信系统中,采用一个复杂度较高的基站比采用多个复杂度较高的接收终端更加可取。因此,一些学者提出了较低复杂度的非线性预编码方案研究方向。针对这两个问题,本文主要研究了两个干扰抑制消除方案。一个是接收机干扰消除方案,主要采用联合迭代译码技术;另外一个是发射机干扰抑制方案,主要采用扩展星座脏纸编码技术。本文首先具体地介绍了联合迭代译码的算法流程,其主要思想是:将除自身信号外的干扰信号视为加性高斯白噪声,采用特殊的译码结构将自身信号和干扰信号同时译出。由于联合迭代译码的发射机不需要任何与信道状态信息相关的处理,因此其不受信道反馈误差的影响,并且其干扰消除性能比大部分预编码方案更好。此外,本文还推导了信道估计误差方差与联合迭代译码的信号干扰噪声比值关系的闭合公式,该公式可作为实际通信过程中参数调整的参考。然后,本文详细地介绍了扩展星座脏纸编码技术的处理过程,其主要思想是:将原始发送信号在二维平面进行扩展,然后在扩展星座子集中寻找与已知干扰最接近的星座点,最后将这两点的差值作为脏纸编码符号。这样处理的方式,不仅可以降低编码后信号的峰值功率和平均功率,还能避免一些对称取模运算带来的性能损失。此外,本文还介绍了扩展星座脏纸编码技术的用户选择方法,与未采用用户选择的方案相比,采用用户选择方案在系统误码率性能上有较大的提升。
其他文献
由于无线传感器网络规模大、节点硬件能力受限、工作环境复杂等多方面限制,使得WSN网络传输安全受到挑战。本文对WSN密钥分配算法和路由安全协议进行了深入的研究,旨在设计出
目前世界各国主流的频谱分配策略是静态分配方式,大多采用授权许可制度。然而许多授权用户,并非一直占用授权频段,许多频段处于空闲状态,这直接导致了的频谱利用率低下。在这
跳频通信因具有抗干扰能力强、截获率低等特点而被广泛应用,尤其是在军事领域。与传统的抗干扰方式不同,它通过伪随机码控制载波的跳变,从而有效躲避干扰信号,克服了定频通信
认知无线电技术作为提高频谱资源利用率的有效手段近年来得到了广泛地关注和研究。在认知系统中,认知用户能够利用合法授权主用户的频谱资源进行通信,前提是其发射功率不能过
随着无线通信技术的快速发展和无线业务的迅猛增长,使得不可再生的频谱资源变得越来越稀缺。然而,研究表明,频谱的稀缺并不是因为其物理上的缺乏,而是由于固定的频谱分配策略
智能决策引擎是认知无线电(Cognitive Radio,CR)系统的核心模块,通过自身的优化决策和学习推理功能,实现系统资源的最佳配置。OFDM(Orthogonal Frequency Division Multiplex
Cloud-RAN架构作为绿色无线通信系统中的一种新概念,一经被提出就吸引了众多无线通信领域的研究者和厂商的注意力。Cloud-RAN架构的核心思想就是将射频单元与基带处理单元分
无源毫米波成像是一种通过探测目标与自然场景在毫米波段内的辐射能量,然后利用能量差异来实现成像的先进技术。由于毫米波具有良好的穿透性——能轻易穿透人体衣物、战场硝
波束成形作为智能天线中的关键技术,可以有效地解决频谱资源匮乏的问题。它在通信系统中引入了空时处理的自由度,利用用户信号到达方向的不同,采用空分多址,将同时、同频、同
未来无线数据业务推动着无线通信系统的发展。MIMO(Multiple-input multiple-output)技术满足了口益增长的无线数据业务的需求,是未来无线通信系统中的关键技术,尤其是MIMO空