基于核密度估计的齿轮箱故障识别方法研究

来源 :长沙理工大学 | 被引量 : 0次 | 上传用户:ktzgy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
齿轮箱作为改变速度与传递动力的基本传动部件,复杂的机械装置,嘈杂的运行环境、切换频繁的工况等因素,导致设备内部容易发生故障。故障的产生会延缓生产进度,威胁工作人员的安全,因此,对齿轮箱进行损伤检测与识别极其重要。近年来,国内外的研究人员从齿轮箱信号特征的融合、状态识别等方面开展故障识别并取得了很多成果,但齿轮箱在高温、高寒、多工况等环境下工作导致齿轮箱的工况频繁发生变化,使转速发生波动而存在频率混叠现象等特点,导致上述的检测方法在多工况下有效性大打折扣。因此本文从齿轮箱检测的特征值提取和故障识别方法两个方面,开展多工况下的齿轮箱故障识别。首先以单级斜齿轮的简化动力学模型为基础,研究了单级齿轮的振动机理。分析了恒定与波动转速下的斜齿轮典型故障及其对应的振动信号特征。同时,对实际转速存在波动的齿轮箱信号进行研究处理,研究结果表明波动转速会引起故障频率模糊,因此研究检测与识别方法对波动转速工况不敏感性非常有必要。其次,针对齿轮箱的波动转速而导致信息获取及检测困难的问题,提出了一种基于Fisher比率算法的齿轮箱振动信号的故障特征融合指标提取方法。利用齿轮箱的公开试验数据,以不同损伤的振动信号为研究对象,并与常用的时域频域特征参数进行对比分析,结果表明所提融合特征指标结果的可分度高于传统特征值,是检测齿轮箱运行状态的一种有效检测方法。最后,为了提高不同工况下齿轮箱损伤识别方法的可靠性与适用性,将频谱和密度函数相结合来识别齿轮状态。针对齿轮箱易受影响和多工况等特征,利用齿轮箱频谱信息成分丰富的优势,提出了基于频谱核密度函数相似性的齿轮运行状态的识别方法。通过单一损伤与复合损伤的16种运行工况的振动信号,对所提方法进行了可靠性、可分度和抗噪性能的验证。结果表明负载对识别方法的影响略微明显。相比频率分布直方相似法,基于核密度函数频谱相似性的识别方法具有更高的可靠性、相关性和抗噪性能。
其他文献
光纤激光器的主要特点就是指以光纤作为谐振腔的同时充当着光波导的角色。相比于气体激光器、固体激光器等其他的激光器而言,光纤激光器拥有较好的输出光束质量,体积小、结构
本文针对亚音速气流中具有不同边界条件的二维壁板的气动弹性稳定性问题开展理论和实验研究。本文考虑的三类壁板分别为:两端固定壁板(固支-固支,简支-简支、简支-固支)、(常规)悬臂壁板(固支-自由)及倒置悬臂壁板(自由-固支)。本文的主要内容如下:1.阐述了本文的研究背景、现状及意义。介绍了壁板气动弹性问题的相关理论,并指出现有理论在不同边界条件壁板受空腔效应、壁面效应、流体非理想因素及复杂流场等典型
光纤作为光学系统的基础元件,它的质量决定整个光传输系统的性能好坏,而光纤端面检测技术是衡量光纤质量水平的重要标志。目前光纤端面的检测还依赖于传统的人眼检测,存在效率低、精度不高、耗时长等缺点。随着信息时代的高速发展以及工厂智能化水平的不断提高,传统的人工检测技术即将迎来重大变革。为了节省人力,提高检测效率,满足工业智能化发展的需求,研究光纤端面的智能检测方法,实现光纤质量检测的智能化对于光纤生产行
‘金珠沙梨’被誉为梨中珍品,有‘沙梨王’之称。它具有丰富的营养价值但口感较差。本研究以‘金珠沙梨’为试验材料,比较研究了它与‘圆黄’和‘黄冠’不同发育时期果实的品质和显微结构,旨在探索‘金珠沙梨’果实中各品质因子的形成特点,为‘金珠沙梨’品质改良措施的实施提供理论依据,主要研究结果如下:(1)‘金珠沙梨’果形的发育是纵向增长与‘圆黄’和‘黄冠’相近,而横向增长缓慢,至果实成熟时为椭圆形,形似腰鼓。
目的:组蛋白赖氨酸特异性去甲基化酶(histone lysine specific demethylase 1,LSD1)能够特异性催化基因启动子区组蛋白H3K4单甲基或二甲基的去甲基化,由此抑制基因转录。本课题组前期研究发现,组蛋白去乙酰化酶5(HDAC5)与LSD1在人乳腺癌细胞中协同作用促进乳腺癌细胞的恶性增殖、迁移与侵袭。本研究拟鉴定乳腺癌细胞中HDAC5-LSD1调控轴共同调控的下游靶基
现如今,电力电子行业越来越注重高电压、大容量领域的应用,而多电平变换器以其适用于高电压、大容量领域且其输出谐波畸变率小,单个开关管所受电压低等优势在各式各样的变换器中脱颖而出,所以多电平变换器具有良好的研究价值和应用前景。而在多电平变换器之中,研究的较多的是三电平中点箝位型(Neutral-Point Clamped,NPC)变换器,因为三电平NPC变换器有着其独特的优点——拓扑结构相对其他多电平
由于摄像机标定环节无法达到的较高的精度,同时三维重建的方式往往较为复杂,故而,本文重点针对以提取控制点坐标为目标而拟定的角点检测方法,展开较为深入的细致探究。不仅如此,本文还针对以混合粒子群为基础而拟定的摄像机标定法等各种方法进行深入剖析。本文研究时进行了大量的实验,由此获得了诸多结论,详细内容如下:由于以往所一直沿用的摄像机标定法通常达不到较高的精度,同时自标定法无法满足良好的鲁棒性要求,经由综
混凝土因其良好的经济性、适用性、力学性及可塑性,广泛应用于房建、道路、桥梁、市政等工程。在混凝土广泛应用的背后,实际工程中会存在一些桥梁结构端部因抗剪承载能力不足而出现的质量事故。针对这类问题,本文以声发射无损检测技术为工具,实时监测混凝土损伤破坏过程,建立混凝土材料的定量化、可视化损伤预警体系,为解决工程实际问题提供理论参考。本文通过不同骨料粒径普通混凝土棱柱体试件轴心受压试验,利用应力-应变曲
金属镍因其高强度、耐酸、耐碱和耐高温等优异的性能常应用于军工制造业、民用机械制造业和电镀工业等。但是,镍的表面硬度不高、耐磨性较低等特点限制了其应用领域的进一步拓展,为了提高镍的使用性能,需对其进行表面处理。本文采用熔盐电解法和固体粉末法在纯镍表面渗硼,以改善其表面性能。首先,熔盐电解法渗硼以85%Na_2B_4O_7·10H_2O-15%Na_2CO_3作电解质,固体粉末法以96%B_4C-4%
液流电池(Redox Flow Battery,RFB)是具有容量和功率解耦、可深度充放电、长寿命、绿色环保和低成本等优点的大规模储能技术之一。液流电池不仅可以大规模存储可再生能源(如风能、太阳能、潮汐能等),还可以用作电网调峰从而提高电网运行效率并提高电网安全性。目前,全钒氧化还原液流电池(Vanadium Redox Flow Battery,VRFB)是商业化发展最好的液流电池技术之一,但其