磁-电-声多物理场作用下激光熔覆涂层裂纹抑制机理及组织性能研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:xyz880330
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
裂纹问题是窒碍激光熔覆进一步推广应用的关键。因而制备无裂纹的覆层一直是表面工程和材料科学领域共同关注的热点。本文针对覆层裂纹这一难点和关键问题,提出声-电-磁多物理场辅助激光熔覆制备涂层新工艺。采用理论分析与实验研究相结合的方法,探究了单物理场与多物理场对熔池凝固过程、覆层开裂倾向、宏微观组织形貌以及熔覆涂层显微硬度、摩擦学性能和抗腐蚀性能的影响规律。主要内容与结论如下:首先,综述了激光熔覆裂纹的研究现状,提出了声-电-磁多物理场辅助激光熔覆制备高性能涂层的新方法,探索了多物理场对熔池内部对流、传热与传质的影响规律;其次,设计了声-电-磁多物理场实验装置。该实验装置可实现各物理场参数的调节并实现多物理场与激光熔覆设备的耦合协同,可快捷、有效、独立、安全地进行熔覆制备;再次,探析了不同磁场波形对覆层组织影响之间的区别。利用磁场装置开展稳态、脉冲、交变及交变-脉冲4种磁场波形对激光熔覆开裂倾向、宏微观组织、相组成、显微硬度、摩擦学性能以及抗腐蚀性能影响的研究;初步分析探究磁场对覆层裂纹、熔池作用的机理。结果表明,磁场的引入可显著影响覆层宏观形貌,细化覆层组织,并进一步促使柱状晶向等轴晶转换,但是部分波形的磁场会带来Cr B硬质相的偏析;对于激光熔覆熔池的扰动作用的显著程度依次为:脉冲磁场>交变-脉冲磁场>交变磁场>稳态磁场;最后,研究了多物理场对覆层开裂倾向、宏微观组织、相组成、显微硬度、摩擦学性能及抗腐蚀性能的影响。结果表明,磁、声、电场影响了覆层的宏观形貌,细化了其微观组织,均匀了其元素分布,摩擦学及抗腐蚀性能显著提升;多物理场作用下的覆层裂纹数较无物理场作用及磁、声、电场分别降低了76.92%、30.76%、38.46%和15.38%;偏析区域面积分别降低了39.23%、35.38%、17.26%和26.49%;平均显微硬度分别提高了37.89%、5.72%、20.78%和13.44%;平均摩擦系数分别降低了61.96%、12.71%、41.95%和35.23%;平均磨损失重分别降低了61.05%、17.89%、48.25%、21.18%;腐蚀速率分别降低了93.01%、52.78%、60.46%、22.73%。以上结果表明,该方法的应用能突破传统激光工艺参数调整的极限,有效提升激光熔覆技术的质量与稳定性,提高对覆层的调控效率,拓宽该技术的应用范围。
其他文献
聚酮(PK)是一种新型绿色工程塑料,在汽车部件、包装薄膜及电子电器等方面的应用得到了广泛的关注。近些年来,针对PK增强改性的研究较多,主要通过添加无机增强填料复合来改善PK的力学性能。无机晶须是一种重要的增强填料,目前在PK上的应用研究较少。本文选取了硫酸钙晶须(CSW)与碱式硫酸镁晶须(MOSw)为增强填料与PK共混制备了PK/晶须复合材料,研究了硫酸钙晶须(CSW)与碱式硫酸镁晶须(MOSw)
近年来,具有局部表面等离子体共振(LSPR)的等离子体光催化剂已经在光催化技术领域得到了广泛的关注。金属纳米粒子(Au、Pt、Ag、Cu等)通过金属局部表面等离子体共振(LSPR),可以有效的将低能太阳光子转换成化学能。但金属纳米粒子由于自身存在载流子复合率过高的问题,导致热电子传输效率过低。本文在简易的光催化体系下,首先探究了不同金属的局部表面等离子体共振(LSPR)效应以及金属铜的不同形貌对局
随着白色污染的加剧和人们环境保护意识的提升,一次性塑料制品的使用受到了限制,其中低密度聚乙烯(LDPE)薄膜占据了重要地位,开发一种可取代LDPE的全生物降解薄膜材料成为了当下的热门话题。本文从聚对苯二甲酸-丁二醇-己二酸共聚物(PBAT)全生物降解薄膜的原料配方、基本物性以及成型工艺进行研究。选用全生物降解材料聚丁二酸丁二醇酯(PBS)增强PBAT,形成PBAT/PBS共混材料,采用扩链剂提高P
当今世界各国的可持续发展因能源和环境问题而受阻,但市场对高性能储能设备的需求却日益增加。锂离子电容器和锂基双离子电池是两类适应时代发展出现的新型锂基储能器件,因兼具高能量密度,高功率密度以及长循环寿命的特点而受到广泛关注。而电极材料很大程度上决定了器件的性能,因此开发具有高性能的电极材料是提升器件性能的关键。本文合成两种钙钛矿型电极材料,将二者作为负极材料探究它们在锂离子电容器和锂基双离子电池中的
环己酮是一类大宗石油化工原料,由于其廉价易得和便于操作的优点,被广泛应用于现代化工生产中。环己酮既是制备工业产品尼龙、己内酰胺和己二酸的主要中间体,也可用作医药、涂料、染料等精细化学品的重要中间体,还是一种重要的工业溶剂。近十年来,以环己酮脱氢芳构化作为芳基源而被应用于有机合成中,相较于传统金属催化的偶联反应,这类反应一般无需使用复杂的反应底物。伴随着“绿色化学”理念的推广,无过渡金属参与的环己酮
荧光成像技术因其能够进行可视化、高灵敏、实时信号反馈等优势,被广泛应用于生物医学成像研究。近红外荧光染料的发射波长较长(650-900 nm),具有较低的背景干扰、较好的组织穿透能力、较小的光损伤等亮点促进了探针在生物医学方面的应用,但是目前所报道的近红外荧光探针存在光稳定性差、斯托克斯位移小、成像信号单一等问题,基于此,本论文主要围绕着生物活性分子的检测设计开发了一系列近红外荧光探针,经过对其光
二维纳米材料,尤其是过渡金属硫族化合物,由于其令人着迷的光电性能,可调的带隙,出色的柔韧性和稳定性而引起了越来越多的关注。二维二硫化钼(MoS2)凭借独特的谷底偏振光学响应,快速的光学响应速度以及在很宽的波长范围内有非常高的光吸收率,使其在光电器件中得到了广泛应用。表面电势与纳米材料的功函数和费米能级有关联,对研究载流子浓度,电荷传输,接触势垒和纳米器件的设计具有重要意义。因此,研究二维MoS2的
近年来,锂离子二次电池在能源储存领域取得了巨大的成功,推动了人类社会的发展。然而,面对锂离子电池关键材料的资源、环境、回收、价格等问题的挑战,发展下一代综合性能优异的电池关键材料非常关键。有机电极材料由于其原料来源渠道广泛、结构灵活且可设计性强、相对较低的成本和环境友好等特点,在电化学能源储能领域受到广泛关注。然而有机分子固有的低电子电导率和高溶解性,极大地限制有机电池的发展。卟啉有机材料由于其具
近几年来,以供电子稠环单元为中心核的吸电子基团-供电子基团-吸电子基团(A-D-A)型非富勒烯小分子受体(NF-SMAs)受到了越来越多的关注。这类NF-SMAs材料由供电子稠环中心核、侧链和吸电子端基构成,供电子稠环中心核的大平面的刚性结构能有效提高分子间-堆积作用,从而改善电荷传输效率,而且,稠环中心核具有较强的供电子能力,可以和吸电子端基进行分子内电荷转移作用,从而达到拓宽材料吸收光谱的效果
生物镁合金具有低密度、适中的力学性能和良好的生物相容性,作为新一代可降解生物医用材料,应用前景广阔,但其过快的降解速率极大地限制了其临床应用。因此,深入研究生物镁合金的腐蚀机理及其影响因素,建立其降解失效的预测模型与方法,可为生物镁合金耐腐蚀性能的改善以及服役过程可靠性的提高提供理论依据。相场方法是模拟材料在各种环境下微观结构演化的一种强有力的工具,本论文以WE43商业镁合金为研究对象,采用相场方