纤维负载氧化钯催化甲酸盐制氢及串联降解有机污染物

来源 :浙江理工大学 | 被引量 : 0次 | 上传用户:hyper11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
能源短缺与环境污染是当今社会面临的两大难题。氢能以其来源广泛、热值高、产物无污染等优点将成为未来的主流能源。其中,催化甲酸及其衍生物制氢已成为当前氢能开发的热点领域之一。然而,低产氢效率和低选择性是制约该技术实际应用的瓶颈问题。同时,传统降解纺织印染废水的生物法、芬顿法以及光电催化等技术面临着处理条件苛刻、效率低以及易二次污染等问题,也亟需开发新技术和新方法。针对上述问题,本文做了三个方面的研究。首先,我们利用无机中空纳米纤维的高比表面积和丰富的传质通道,以一维钛酸盐纳米纤维作为氧化钯纳米催化剂的载体,大幅提高了氧化钯室温催化甲酸盐制氢的活性和选择性。其次,本文利用甲酸盐制氢反应过程中产生的大量活性自由基作为氧化剂和还原剂,用于快速降解包括硝基酚和染料在内的多种有机污染物,成功构建了串联催化体系。最后,以纺织工程技术为指导,本文设计开发了柔性有机纤维负载无机纳米催化剂体系,优化了纳米催化剂的活性,增进了纳米催化剂的稳定性,有效解决了无机纳米催化剂在实际使用过程中易团聚、易失活以及无法有效回收等痛点问题,最终为氢能开发和污染物处理提供了全新的思路和方法。本文具体研究内容如下:(1)基于柯肯达尔效应,我们开发了一维钛酸盐纳米纤维负载空心Pd O纳米催化材料(kv-Pd O/Ti NFs)。无需外加助剂,kv-Pd O/Ti NFs表现出优异的室温选择性催化甲酸钠产氢活性,产氢速率可达15.8 mol g Pd-1 h-1,反应转化率TOF值高达6312.7 h-1。反应气体成分只有H2,无COx的产生,减少温室气体排放的同时也避免了催化剂中毒失活,从而使催化剂具有高稳定性。基于实验和DFT计算结果,我们发现暴露在表面的Pd和最外缘的O原子显著增强了Pd O(101)催化活化C-H键以及分解水的能力,改变了反应路径,降低了反应活化能,这是kv-Pd O/Ti NFs高效催化甲酸钠制氢的根本原因。(2)通过原位还原技术,我们将纳米Pd负载于Ti NFs上,并使Pd在O2气氛中充分氧化,成功制备出价态可变的Pd Ox/Ti NFs(1x中的O原子上,被邻近H自由基还原为氨基后,才从催化材料表面脱附。这一过程保证了硝基转化为氨基的催化选择性接近100%,而反应决速步骤则是-NO2还原为-NO。硝基酚彻底还原为氨基酚后,剩余的甲酸盐会继续催化产生H2,因此反应体系的氢利用率可达100%。(3)为解决纳米催化剂易团聚失活的问题,我们利用纺织纤维材料的柔性、易加工、表面性能可控等特性,通过表面水热适度刻蚀聚酰亚胺纤维,将其与氧化钯纳米催化剂复合,制备了柔性复合纤维催化材料。纤维载体为纳米催化材料提供了吸附位点,同时可将反应底物富集,提供了催化反应微环境。我们将复合纤维催化材料结合甲酸盐制氢反应,用于串联降解偶氮类染料。结果表明,在室温反应条件下,该体系不仅对单一染料有高效的脱色降解效果,具有良好的耐高盐特性,还可实现多种染料的同步高效脱色降解,为复杂环境下纺织印染废水的处理提供了新的解决途径。
其他文献
本研究首先通过高压均质技术对甜菜粕进行处理,研究高压均质处理对甜菜粕性质的影响;然后通过超微粉碎和普通粉碎技术制备不同粒径的辣木叶粉末,研究超微粉碎处理和粒度对辣
研究背景神经源性膀胱(Neurogenic Bladder,NGB)患者易出现泌尿系感染(Urinary Tract Infection,UTI)。预防UTI的发生对于改善疾病管理效果有重大意义。但目前尚缺乏NGB患者U
精密光谱一直以来都是研究原子分子结构、探索物理化学问题的重要手段。分子吸收强度的高精度测量可以实现痕量分子的定量分析;分子跃迁频率的高精度测量可以作为频率基准、
本研究通过现代测序技术对人参疫病组和健康人参组进行高通量转录组测序,使用短reads组装Trinity软件做从头组装,建立人参疫病与健康人参的转录组数据库。将转录组数据序列比
水稻机械化生产的瓶颈在于机械化种植,其中机插秧的关键是育秧,水稻秧苗素质好坏与机插效率、生长发育及产量息息相关。现今机插秧效率受到两方面的限制,一是来自播种密度对
Eph家族受体是最多的一类酪氨酸激酶受体蛋白,Eph通过与表达其配体Ephrin的邻近细胞相互作用发挥双向信号转导功能。Ephrin-Eph介导的信号通路通过调节下游Rho GTPase的活性
背景中性粒细胞胞外诱捕网(Neutrophils Extracellular Traps,NETs)是中性粒细胞一种特殊的坏死方式。最初研究发现其主要作用是抗菌,之后研究发现,各种刺激因子如炎症因子、
肠道共生菌在肠道免疫系统的发育、分化和稳态维持方面发挥着重要作用。在无菌条件下,小鼠的肠道相关淋巴组织比如肠系膜淋巴结(Mesenteric lymph nodes)变小,同时肠道免疫细
Ni-Mo合金涂层因具有高的硬度、优良的耐磨性和耐腐蚀性、及低的析氢过电位等优点,而广泛应用于电子、汽车、航空航天、模具和化工等行业。但是,随着工业的发展,合金涂层已经
面对日益复杂动荡的商业环境,当代组织越发认可组织学习的战略重要性,并斥巨资开展线上线下的员工培训、辅导和师徒传帮带等。如今,社交媒体技术在工作场所的普及逐渐改变了