论文部分内容阅读
随着整个社会经济的迅猛发展,能源短缺问题变得越来越严重,核能作为一种高效清洁的能源受到更加广泛的重视。铀是核能的主要燃料,也是重要的战略资源。在铀资源的加工和使用过程中,会产生大量的放射性含铀废水,如不妥善处理,将会对生态环境和人类健康产生巨大危害,也会浪费地球上有限的铀资源。因此,研究处置含铀废水的新方法、新技术具有重要意义。杯芳烃是一类拥有独特空穴结构的第三代超分子环状低聚化合物。因其合成步骤简单,结构易修饰等特点,杯芳烃及其衍生物受到愈来愈多的关注。磁性纳米Fe3O4粒子具有许多独特的性质如良好的生物相容性、优异的磁性、巨大的比表面积等,在众多领域中展现出广阔的应用前景。本文基于杯[4]芳烃与UO22+的空间匹配效应,以杯[4]芳烃为母体,对其上沿进行羧基化改性,对其下沿进行磷酸酯修饰,然后,将杯[4]芳烃衍生物“接枝负载”到磁性纳米Fe3O4粒子上,并通过红外光谱(FTIR)、核磁共振(NMR)、扫描电镜(SEM)等方法对各阶段产物进行表征。此外,我们还研究了不同条件下,这一系列目标产物对铀的分离富集性能。本论文的主要研究内容及结论如下:(1)以氯磷酸二苯酯作为取代基,通过取代反应对杯[4]芳烃下沿进行修饰,合成出一种新型杯[4]芳烃磷酸酯衍生物,并采用傅立叶变换红外光谱和核磁共振氢谱对其表征。考察了pH值、萃取剂浓度、萃取时间、萃取温度等外界因素对杯[4]芳烃磷酸酯衍生物萃取U(Ⅵ)的影响。结果表明:在铀的初始浓度为5 mg/L时,杯[4]芳烃磷酸酯衍生物萃取铀的最佳条件是pH值为4.0,温度为25℃,萃取剂浓度为0.20 g/L,萃取平衡时间为2 h。杯[4]芳烃磷酸酯衍生物萃取铀的过程符合准二级反应动力学模型。此外,在有多种共存离子的情况下,杯[4]芳烃磷酸酯衍生物表现出对U(Ⅵ)良好的选择性萃取能力。(2)用对氨基苯甲酸和氯磷酸二苯酯分别对杯[4]芳烃的上、下沿进行修饰,得到对羧基苯偶氮基杯[4]芳烃磷酸酯衍生物。采用红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)对其进行了表征,并调查了pH值、萃取时间和温度对CPD萃取铀的影响。结果表明,pH值,萃取时间和温度都会影响CPD对U(Ⅵ)的萃取。当初始pH值为5,温度为25℃,萃取时间为2 h时,CPD对U(Ⅵ)的萃取率达到最大。计算了萃取过程的动力学参数和热力学参数。计算结果表明,CPD萃取铀是一个自发放热过程,且与准二级动力学模型吻合较好。(3)通过简单的自组装方法,制备了由磁性纳米Fe3O4粒子和杯[4]芳烃磷酸酯衍生物(CPD)组成的磁性功能化杯[4]芳烃复合材料。采用扫描电镜(SEM)、粉末X射线衍射(PXRD)和傅里叶变换红外(FTIR)技术对其进行了表征。将合成的Fe3O4/CPD复合材料用来去除在不同条件下水溶液中的U(VI)。同时,对吸附过程的等温线、动力学和热力学进行了拟合与分析。结果表明,Fe3O4/CPD复合材料是一种很有前途的吸附材料,可用于环境污染治理中U(VI)的分离富集。